• Title/Summary/Keyword: 역T형 거더

Search Result 6, Processing Time 0.018 seconds

An Evaluation of Flexural Performance of Composite Beam with Ultra High Performance Concrete Deck and Inverted T-Shaped Steel Girder (초고강도 콘크리트 바닥판과 역T형 강재 합성보의 휨 성능 평가)

  • Yoo, Sung-Won;Joh, Chang-Bin;Choi, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • In this paper, when the composite beam is made with UHPC deck and steel girder, the steel girder takes the form of the inverted-T shape without top flange because of high strength and stiffness of UHPC deck. There is no evaluation by experiment and analysis about the shear connector behavior on the web of steel girder and flexural behavior of inverted-T shape composite beam. By this reason, this study compares between experiment and analysis by using tension softening model of UHPC on the basis of flexural test results of 16 members considering compressive strength of UHPC, spacing of stud and thickness of deck as variables. The results of tensile strength of UHPC by inverse analysis were 6.57 MPa(in case of 120 MPa) and 9.57 MPa(in case of 150 MPa). In case of the test members with small stud spacing, the results of analysis and test were close clearly, and the test members with thick deck and low UHPC compressive strength also similar, but effects were small. As it compared between analysis and experiment totally, the results of analysis and experiment agree well. So the tension softening model of UHPC is reasonably reflected on the real behavior of composite beam of UHPC.

Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Steel Girder (강섬유로 보강된 초고성능 콘크리트 바닥판과 역T형 강거더 합성보의 휨거동 실험)

  • Yoo, Sung-Won;Ahn, Young-Sun;Cha, Yeong-Dal;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.761-769
    • /
    • 2014
  • Ultra high performance concrete (UHPC) has been developed to overcome the low strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

Analysis of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Shaped Steel with Tension Softening Behavior (인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 바닥판과 역T형 강재 합성보의 휨거동 해석)

  • Yoo, Sung-Won;Yang, In-Hwan;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.185-193
    • /
    • 2015
  • Ultra high performance concrete (UHPC) has been developed to overcome the low tensile strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level (압축강도 수준을 고려한 강섬유 보강 UHPC와 역T형 강재 합성보의 휨거동 실험 연구)

  • Yoo, Sung-Won;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.677-685
    • /
    • 2015
  • In a will to subdue the brittleness as well as the low tensile and flexural strengths of ordinary concrete, researches are being actively watched worldwide on steel fiber-reinforced Ultra High Performance Concrete (UHPC) obtained by admixing steel fibers in ultra high strength concrete. For the purpose of maximizing advantage of UHPC, this study removes the upper flange of the steel girder to apply an inverted T-shape girder for the formation of the composite beam. This paper intends to evaluate the behavior of the shear connectors and the flexural characteristics of the composite beam made of the inverted T-shape girder and UHPC slab using 16 specimens considering the compressive strength of concrete, the mixing ratio of steel fiber, the spacing of shear connectors and the thickness of the slab as variables. In view of the test results, it seemed that the appropriate stud spacing should range between 100 mm and 2 or 4 times the thickness of the slab. Moreover, the relative displacement observed in the specimens showed that ductile behavior was secured to a certain extent with reference to the criteria for ductile behavior suggested in Eurocode-4. The specimens with large stud spacing exhibited larger values than given by the design formula and revealed that the shear connectors developed larger ultimate strength than predicted owing to the action of UHPC and steel after non-composite behavior. Besides, the specimens with narrow stud spacing failed suddenly through compression at the upper chord of UHPC before reaching the full capacity of the shear connectors.

Stud and Puzzle-Strip Shear Connector for Composite Beam of UHPC Deck and Inverted-T Steel Girder (초고성능 콘크리트 바닥판과 역T형 강거더의 합성보를 위한 스터드 및 퍼즐스트립 전단연결재에 관한 연구)

  • Lee, Kyoung-Chan;Joh, Changbin;Choi, Eun-Suk;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Since recently developed Ultra-High-Performance-Concrete (UHPC) provides very high strength, stiffness, and durability, many studies have been made on the application of the UHPC to bridge decks. Due to high strength and stiffness of UHPC bridge deck, the structural contribution of top flange of steel girder composite to UHPC deck would be much lower than that of conventional concrete deck. At this point of view, this study proposes a inverted-T shaped steel girder composite to UHPC deck. This girder requires a new type of shear connector because conventional shear connectors are welded on top flange. This study also proposes three different types of shear connectors, and evaluate their ultimate strength via push-out static test. The first one is a stud shear connector welded directly to the web of the girder in the transverse direction. The second one is a puzzle-strip type shear connector developed by the European Commission, and the last one is the combination of the stud and the puzzle-strip shear connectors. Experimental results showed that the ultimate strength of the transverse stud was 26% larger than that given in the AASHTO LRFD Bridge Design Specifications, but a splitting crack observed in the UHPC deck was so severe that another measure needs to be developed to prevent the splitting crack. The ultimate strength of the puzzle-strip specimen was 40% larger than that evaluated by the equation of European Commission. The specimens combined with stud and puzzle-strip shear connectors provided less strength than arithmetical sum of those. Based on the experimental observations, there appears to be no advantage of combining transverse stud and puzzle-strip shear connectors.

A Study of Structural Behavior Analysis of Inegral and Semi-Integral Hybrid Slab Bridge (일체식 및 반일체식 복합슬래브 교량의 구조거동 분석에 관한 연구)

  • Choi, Young-Guk;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • Girder bridges and slab bridges are equipped with a system consisting of a flexible joint unit, support, inverted T shaped abutment, and a separate connecting slab structure. These systems have problems such as an increase in cost due to frequent breakage of the expansion joints and a decrease in durability due to a structure with low moment redistribution. To improve these problems, propose Inegral and Semi-Integral Hybrid Slab Bridge and examine the safety through structural analysis. As a result of the review, Inegral and Semi-Integral Hybrid Slab Bridge was the section stiffness is small. but it is confirmed that the structural safety, ductility and flexibility are higher than existing bridges because the moment redistribution and the force transmission are surely performed.