• Title/Summary/Keyword: 역학적 해석 모델

Search Result 721, Processing Time 0.027 seconds

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

The Change in Range of Motion after Removal of Instrumentation in Lumbar Arthrodesis Stiffness of Fusion Mass: Finite Element Analysis (척추 유합술 후, 척추경 나사못 제거에 따른 인접 분절의 운동범위에 대한 유한요소해석)

  • Kang, Kyoung-Tak;Lee, Hwa-Yong;Son, Ju-Hyun;Chun, Heoung-Jae;Kim
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.283-286
    • /
    • 2009
  • 척추경 나사못을 이용한 요추 유합술은 가장 보편적으로 사용되어지는 수술적 치료 방법이다. 과거 여러 연구들에서 이러한 척추 유합술의 임상적 우수성은 이미 입증 되었으며, 척추경 나사못은 시술 부위의 운동을 완전히 제한함으로써 높은 유합율을 얻을 수 있으나, 상대적으로 인접 분절의 조기 퇴행성 변화의 요인 중 하나로 보고되고 있다. 따라서 본 연구에서는 유한요소해석 방법을 이용하여 척추경 나사못 시술에 따른 척추체의 운동범위 및 인접 분절 추간판의 스트레스 증가량을 계산하였고, 척추경 나사못 모델과 유합 후 나사못 제거에 따른 모델 또 시술하기 전 정상모델과 비교하여 생체 역학적 측면에서 분석하여 척추경 나사못을 이용한 요추 유합술 후, 척추경 나사못의 제거의 임상적 효과와 그 이론적 근거를 제시하고자 한다.

  • PDF

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Characterization of Thickness and Thermoelastic Properties of Interphase in Polymer Nanocomposites using Multiscale Analysis (멀티스케일 해석을 통한 고분자 나노복합재의 계면 상 두께와 열탄성 물성 도출)

  • Choi, Joonmyung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.577-582
    • /
    • 2016
  • In this study, a multiscale method for solving a thermoelasticity problem for interphase in the polymeric nanocomposites is developed. Molecular dynamics simulation and finite element analysis were numerically combined to describe the geometrical boundaries and the local mechanical response of the interfacial region where the polymer networks were highly interacted with the nanoparticle surface. Also, the micrmechanical thermoelasticity equations were applied to the obtained equivalent continuum unit to compute the growth of interphase thickness according to the size of nanoparticles, as well as the thermal phase transition behavior at a wide range of temperatures. Accordingly, the equivalent continuum model obtained from the multiscale analysis provides a meaningful description of the thermoelastic behavior of interphase as well as its nanoparticle size effect on thermoelasticity at both below and above the glass transition temperature.

막구조의 설계.시공 및 유지보수

  • 박명현;박지원
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.23-26
    • /
    • 1991
  • 본 고에서는 막구조의 설계, 시공, 유지관리에 대해 개략적으로 기술하였다. 막구조는 그 여러가지 특성이 아직 규명이 안된 부분이 많고 시공오차가 비교적 큰 편이므로 막 재료의 역학적, 재료적 특성에 대한 연구와 형상해석 모델의 공식화, 막재단의 컴퓨터화가 필요하며 초기장력 도입에 따른 시공과정의 해석이 더욱 필요하다. 따라서 설계, 형상해석, 재단에서 시공 및 유지관리에 이르는 일괄적인 System의 개발이 시급하다 하겠다.

  • PDF

Mechanical Behavior of Cracked Rocks with Biotite Contents (크랙을 갖는 암반에서의 역학적 거동)

  • ;Seiki,Takafumi;Ichikawa, Yasuaki
    • The Journal of Engineering Geology
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1994
  • In general there are many cracks in rocks. In this study, we are concerned with the mechanical effect on cracks on the behavior of rocks. For this purpose, we used spedmens rnade of mortar having one crack set which has a constant length and same direction. Orientafion of this set was varied with respect to the loading axis. We did a number of uniaxial experiments and observed propagafion of the crack set to understand the effect set of the geometry of the crack set and its location on the mechanical behavior of the rocks with distributed crack sets. Finally, we analysed our experiments by FEM elastic analyses and Homogenization theory.

  • PDF

Geomechanical Model Analysis for the Evaluation of Mechanical Stability of Unconsolidated Sediments during Gas Hydrate Development and Production (가스하이드레이트 개발생산과정에서의 미고결 퇴적층의 역학적 안정성 평가를 위한 지오메카닉스모델 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.143-154
    • /
    • 2014
  • In this study, we simulated both dissociation of gas hydrate and mechanical deformation of hydrate-bearing sedimentary formation using geomechanical model. The geomechanical model analysis consists of two distinct codes of TOUGH+Hydrate and FLAC3D. The model is characterized by the fact that changes of temperature, pressure, saturation and their influence on the consequent evolution of effective stress, stiffness and strength of hydrate-bearing sediments during gas production could be well simulated. We compared the results of simulation for two different production methods, and showed that combination of depressurization and thermal stimulation results in the enhancement of production rate especially at early stage. We also presented that the hydrate dissociation-induced geomechanical deformation in unconsolidated clay is much larger than that in sandstone.

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.