• Title/Summary/Keyword: 역전파 네트워크

Search Result 48, Processing Time 0.02 seconds

퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용 (Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.378-384
    • /
    • 2013
  • 본 논문에서는 FCM 클러스터링 알고리즘을 기반으로 하는 퍼지뉴럴네트워크를 제안한다. 일반적으로, 퍼지규칙을 생성할 때 차원이 증가하면 퍼지 규칙의 수가 기하급수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 제안된 네트워크의 퍼지 규칙은 FCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 생성한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현되며, 퍼지뉴럴네트워크의 학습은 뉴런의 연결을 조절함으로써 실현되고, 오류 역전파 알고리즘에 의해 행해진다. 마지막으로, 제안된 네트워크는 비선형 공정으로의 적용을 통해 성능을 평가한다.

뉴럴 네트워크를 이용한 배터리 셀 SOC 추정 (Battery Cell SOC Estimation Using Neural Network)

  • 유경상;김호찬
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.333-338
    • /
    • 2020
  • 본 논문은 역전파 뉴럴 네트워크(Back Propagation Neural Network; BPNN) 알고리즘을 이용한 배터리 셀의 잔존용량(State Of Charge; SOC) 추정 방법을 제안한다. 이를 위해 배터리 성능평가 시뮬레이터를 구현하고 다양한 온도에서의 충방전 실험을 통해 뉴럴 네트워크 학습에 필요한 입출력 데이터를 도출한다. 최종적으로 배터리의 SOC 추정 성능은 Matlab/Simulink 프로그램을 이용하여 Ah-counting에 의한 실험치와 비교를 통해 분석하고 오차율을 3% 미만으로 줄일 수 있음을 시뮬레이션을 통해 확인한다.

확장 칼만 필터를 이용한 웨이블릿 신경 회로망의 학습 방법에 관한 연구 (A Study on Traning Method of Wavelet Neural Network Using Extended Kalman Filter)

  • 김경주;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2197-2199
    • /
    • 2004
  • 시간 및 주파수 특성 분석이 용이한 웨이블릿 변환을 네트워크화 시킨 웨이블릿 신경 회로망의 파라미터 학습 방법에는 오차 역전파 알고리듬 및 유선 알고리듬 등이 있으나 이러한 학습 방법들은 수렴 시간이 오래 걸리는 단점이 있다. 따라서 본 논문에서는 웨이블릿 신경 회로망의 최적 파라미터를 결정하기 위한 학습방법으로 확장 칼만 필터 알고리듬을 제안한다. 일반적으로 확장 칼만 필터 알고리듬은 복잡한 연산 과정에 불구하고 적은 학습 횟수로 빠른 수렴 특성을 가진다. 제안한 방법의 효율성을 검증하기 위해 확장 칼만 필터 학습 방법을 적용한 웨이블릿 신경 회로망을 혼돈 시스템 동정에 적용하여 경사 하강법을 사용한 기존의 신경 회로망에 비해 더 양호한 성능을 가짐을 검증하고자 한다.

  • PDF

Sugeno 퍼지 모델을 이용한 신경망의 학습률 조정 ((Tuning Learning Rate in Neural Network Using Sugeno Fuzzy Model))

  • 라혁주;서재용;김성주;전흥태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.77-80
    • /
    • 2003
  • 신경망의 퍼셉트론 학습법에는 이진 또는 연속 활성화 함수가 사용된다. 초기 연결강도는 임의의 값으로 설정하며, 목표치와 실제 출력과의 차이를 이용하는 것이 주된 특징이다. 즉 구해진 오차는 학습률에 따라서 다음 단계의 연결강도에 영향을 주게 된다. 이런 경우 학습률이 너무 크면 수렴성을 보장할 수 없으며, 반대로 너무 작게 선정하면 학습이 매우 느리게 진행되는 단점이 발생한다. 이런 이유로 능동적인 학습률의 변화는 신경망의 퍼셉트론 학습법에 중요한 관건이 리며, 주어진 문제를 최적으로 학습을 위해서는 결국 상황에 따른 적절한 학습률 조정이 필요하다. 본 논문에서는 학습률 조정에 퍼지 모델을 적용하는 신경망 학습 방법을 제안하고자 한다. 제안한 방법에 의한 학습은 오차의 변화에 따라 학습률을 조정하는 방식을 사용하였고, 그 결과 연결강도를 능동적으로 변화시켜 효과적인 학습 결과를 얻었다. 학습률 변화는 'Sugeno 퍼지 모델'을 이용하여 구현하였다.

  • PDF

자기조직화 교사 학습에 의한 패턴인식에 관한 연구 (A Study on Pattern Recognition with Self-Organized Supervised Learning)

  • 박찬호
    • 정보학연구
    • /
    • 제5권2호
    • /
    • pp.17-26
    • /
    • 2002
  • 본 연구에서는 자기조직화 교사학습 신경망인 SOSL(Self-Organized Superised Learning)과 이 신경망의 구조를 제안한다. SOSL신경망은 하이브리드 형태의 신경망으로써 다수 개의 컴포넌트 에러 역전파 신경망들과 수정된 PCA신경망으로 구성된다. CBP신경망은 군집화되고 복잡한 입력패턴에 대하여 교사학습을 병렬적으로 수행한다. 수정된 PCA신경망은 군집화 및 지역투영에 의하여 원 입력패턴을 보다 작은 차원으로 변환시키기 위하여 사용된다. 제안된 SOSL은 많은 입력패턴을 가짐으로써 큰 네트워크 크기를 가지게 되는 신경망에 효과적으로 적용이 가능하다.

  • PDF

유전자 알고리즘 최적화 신경망을 이용한 학습 (A Learning Using GA Optimized Neural Networks)

  • 윤여창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.27-29
    • /
    • 2008
  • 시스템 분석에 주로 사용하는 자료 중에는 비선형 자료와 시계열 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 분석하는데 어려움이 많다. 본 연구에서는 현실 세계에서 다양하게 나타나는 복잡성을 다루기 위하여 하이브리드 진화 신경망 모델링 접근 방법으로 자료를 모형화 하고 이를 통한 학습의 적합도를 살펴본다. 비선형 자료 등을 모형화하기 위한 학습은 역전파 신경망 기법을 이용한다. 학습의 효율을 높이기 의해서 격자감소 학습 알고리즘과 함께 이용하는 유전자 알고리즘은 네트워크 구조를 최적화 시킬 수 있는 초기가중값을 이용한 전역 최소값을 찾는데 이용한다. 학습 결과를 통해 제안된 하이브리드형 접근방법의 학습이 보다 효율적임을 살펴보기 위하여 유전자 알고리즘으로 최적화된 신경망 학습 알고리즘을 비선형 모의자료의 학습에 적용하여 보았다.

개별 입력 공간 기반 퍼지 뉴럴 네트워크에 의한 최적화된 패턴 인식기 설계 (Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space)

  • 박건준;김용갑;김변곤;황근창
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.181-189
    • /
    • 2013
  • 본 논문에서는 패턴 인식기를 설계하기 위하여 개별 입력 공간을 기반으로 한 퍼지 뉴럴 네트워크를 소개한다. 제안된 퍼지 뉴럴 네트워크는 각 입력 공간을 개별적으로 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 개별적 입력 공간을 퍼지 분할하여 독립적으로 구성하고, 규칙의 후반부는 다항식으로서 표현된다. 퍼지 뉴럴 네트워크의 학습은 퍼지 규칙의 후반부에 있는 뉴런의 연결가중치를 조정함으로써 실현되고, 오류 역전파 알고리즘을 이용하여 실현한다. 또한, 제안한 네트워크의 파라미터를 최적화하기 위하여 실수 코딩 유전자 알고리즘을 이용한다. 마지막으로, 패턴 인식을 위한 실험 데이터를 이용하여 최적화된 패턴 인식기를 설계한다.

러프 집합이론을 이용한 뉴로-퍼지 모델의 최적화 (A Neuro-Fuzzy Model Optimization Using Rough Set Theory)

  • 연정흠;서재용;김용택;조현찬;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.188-193
    • /
    • 2000
  • 본 논문에서는 플랜트를 위한 규칙수가 줄어든 뉴로-퍼지 모델을 얻기 위한 접근을 제안한다. 뉴로-퍼지 네트워크는 가우시안 소속함수를 가진 RBF(Radial Basis Function) 네트워크들로 구성되고 오차 역전파 학습 알고리듬에 의해 학습된다. 러프 집합 이론에서 의존도는 규칙들으 줄이는데 사용된다. 모델에서 각 규칙이 조건 소속함수 값과 플랜트의 출력 값 사이의 의온도는 플랜트를 동정하기 위하여 규칙이 얼마나 많은 공헌을 하는가를 알 수 있도록 한다. 줄어든 모델은 원래의 것으로써 동일한 성능을 유지하는 동안 선택 알고리듬은 복잡성과 구조의 잉여성을 최소화할 수 있다.

  • PDF

u-Health 시스템에서 슬라이딩 윈도우 기반 스트림 데이터 처리 (Stream Data Processing based on Sliding Window at u-Health System)

  • 김태연;송병호;배상현
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권2호
    • /
    • pp.103-110
    • /
    • 2011
  • u-Health 시스템의 센서들로부터 측정된 데이터에 대한 정확하고 에너지 효율적인 관리가 필요하다. 센서네트워크에서 대용량의 입력 스트림 데이터 전체를 데이터베이스에 모두 저장하여 한꺼번에 처리하는 것은 효율적이지 못하다. 본 논문에서는 u-Health 시스템 내 센서 네트워크의 에너지 효율성과 정확성을 고려하여 여러 센서에서 지속적으로 들어오는 다차원 스트림 데이터의 처리 성능을 높이고자 한다. 효율적인 입력 스트림 처리를 위해서 슬라이딩 윈도우 기반으로 질의를 처리하고 Mjoin 방법으로 다중 질의 계획을 수립한 후 역전파 알고리즘을 통해 저장 데이터를 축소하는 효율적인 처리 기법을 제안한다. 14,324개의 데이터 집합을 사용하여 실험한 결과 실제 입력되는 데이터보다 저장 공간의 18.3%를 축소함으로써 효과적임을 보였다.

다층 신경회로망과 가우시안 포텐샬 함수 네트워크의 구조적 결합을 이용한 효율적인 학습 방법 (Efficient Learning Algorithm using Structural Hybrid of Multilayer Neural Networks and Gaussian Potential Function Networks)

  • 박상봉;박래정;박철훈
    • 한국통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.2418-2425
    • /
    • 1994
  • 기울기를 따라가는 방식(gradient descent method)에 바탕을 둔 오류 역전파(EBP : Error Back Propagation) 방법이 가장 널리 사용되는 신경회로망의 학습 방법에서 문제가 되는 지역 최소값(local minima), 느린 학습 시간, 신경망 구조(structure), 그리고 초기의 연결 강도(interconnection weight) 등을 기존의 다층 신경 회로망에 지역적인 학습 능력을 가진 가우시안 포텔샵 네트워크(GPFN : Gaussian Potential Function Networks)를 병렬적으로 부가하여 해결함으로써 지역화된 오류 학습 패턴들이 나타내는 문제에 대하여 학습 성능을 향상시킬 수 잇는 새로운 학습 방법을 제시한다. 함수 근사화 문제에서 기존의 EBP 학습 방법과의 비교 실험으로 제안된 학습 방법이 보다 개선된 일반화 능력과 빠른 학습 속도를 가짐을 보여 그 효율성을 입증한다.

  • PDF