• 제목/요약/키워드: 역전파학습 알고리즘

검색결과 290건 처리시간 0.024초

Generalized Clustering Network를 이용한 전방향 학습 알고리즘 (Feed-forward Learning Algorithm by Generalized Clustering Network)

  • 민준영;조형기
    • 한국정보처리학회논문지
    • /
    • 제2권5호
    • /
    • pp.619-625
    • /
    • 1995
  • 본 연구에서는 역전파(backpropagationlk)학습 알고리즘에 대체될 수 있는 전방향 학습 알고리즘에 준하는 혼합 인식모형을 구성한다. 본 알고리즘은 Nikhil R. Pal (1993)이 제안한 GLVQ(Generalized Learning Vector Quantization)를 이용하여 패턴을 클러스터링 한 다음 비유사성(dissimilarity)을 가진 패턴끼리 재구성(regrouping) 하여 단순 퍼셉트론(simple perceptron)을 이용하여 group별 학습을 한다. 일반적으로 역전파학습인 학습시간이 많이 소요된다는 단점이 있다[1]. 본 알고리즘의 특징으로 는 feed-forward학습이기 때문에 학습시간이 단축될 뿐만 아니라 전체 패턴을 그룹별 로 나누어 학습을 하기 때문에 인식률도 향상 시킬 수 있다. 본 알고리즘에 적용한 데 이타는 250개의 ASCII코드를 16$\times$8격자에 정규화시킨 비트 패턴(bit pattern)을 이용 하였다. 실험결과 250개의 패턴을 10개의 클러스터로 나누어 학습을 시켰을 때 각 클 러스터별 평균반복횟수 94.7회만에 250개의 ASCII코드를 100% 인식할 수 있었다.

  • PDF

진동신호를 고려한 발전기 고정자의 상태진단 시스템 연구 (Condition diagnosis system research considering the state of the generator stator vibration signal)

  • 김연환;주영호;구재량;김은석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.471-474
    • /
    • 2011
  • 본 논문에서는 이러한 문제점을 해결하기 위해서 발전기 고정자의 가진 주파수의 거동패턴을 모델링하고 거동패턴의 위상변화를 학습패턴으로 만들어 오류 역전파 알고리즘으로 학습시킴으로써 고정자 권선 단말부에 대한 상태 감시한다. 고정자 모사장치를 구성하고 장치로부터 가진 데이터를 획득하여 실험한 결과 가진 주파수에서 일정한 형태의 거동패턴을 보였으며, 거동을 학습패턴으로 만들어 오류 역전파 알고리즘에 적용한 결과 뛰어난 성능을 보였다.

  • PDF

KFD 회귀를 이용한 뉴럴-큐 기법 (Neural-Q method based on KFD regression)

  • 조원희;김영일;박주영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.85-88
    • /
    • 2003
  • 강화학습의 한가지 방법인 Q-learning은 최근에 Linear Quadratic Regulation(이하 LQR) 문제에 성공적으로 적용된 바 있다. 특히, 시스템 모델의 파라미터에 대한 구체적인 정보없이 적절한 입ㆍ출력만으로 학습을 통해 문제의 해결이 가능하므로 상황에 따라 매우 실용적인 방법이 될 수 있다. 뉴럴-큐 기법은 이러한 Q-learning의 Q-value를 MLP(multilayer perceptron) 신경망의 출력으로 대치시켜, 비선형 시스템의 최적제어 문제를 다룰 수 있게 한 방법이다. 그러나, 뉴럴-큐 기법은 신경망의 구조를 먼저 결정한 후 역전파 알고리즘을 이용해 학습하는 절차를 행하므로, 시행착오를 통해 신경망 구조를 결정해야 한다는 점, 역전파 알고리즘의 적용에 따라 신경망의 연결강도 값들이 지역적 최적해로 수렴한다는 점등의 문제점이 있다. 본 논문에서는 뉴럴-큐 학습의 도구로 KFD회귀를 이용하여 Q 함수의 근사 기법을 제안하고 관련 수식을 유도하였다. 그리고, 모의 실험을 통하여, 제안된 뉴럴-큐 방법의 적용 가능성을 알아보았다.

  • PDF

역전파학습을 이용한 퍼지모델의 파라메터 동정: 전력부하 예측 (Identification of fuzzy Model using Back-propagation : Electric Power Load Forecasting)

  • 김이곤;류영재;김홍렬;박창석;곽호철
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.186-192
    • /
    • 1995
  • 본 연구에서는 퍼지 클러스터링 알고리즘과 변수선택 방법을 이용하여 모델의 구조 동정을 행하고, 신경회로망의 Back-propagation 학습방법을 이용하여 파라메터동정을 행하 는 새로운 퍼지모델링 알고리즘을 제안하였다. 실제 데이터를 이용하여 전력부하예측시스템 을 설계하였으며 그 결과 타당성을 입증하였다.

  • PDF

역전파 신경회로망과 Q학습을 이용한 장기보드게임 개발 ((The Development of Janggi Board Game Using Backpropagation Neural Network and Q Learning Algorithm))

  • 황상문;박인규;백덕수;진달복
    • 대한전자공학회논문지TE
    • /
    • 제39권1호
    • /
    • pp.83-90
    • /
    • 2002
  • 본 논문은 2인용 보드게임의 정보에 대한 전략을 학습할 수 있는 방법을 역전파 신경회로망과 Q학습알고리즘을 이용하여 제안하였다. 학습의 과정은 단순히 상대프로세스와의 대국에 의하여 이루어진다. 시스템의 구성은 탐색을 담당하는 부분과 기물의 수를 발생하는 부분으로 구성되어 있다. 수의 발생부분은 보드의 상태에 따라서 갱신되고, 탐색커널은 αβ 탐색을 기본으로 역전파 신경회로망과 Q학습을 결합하여 게임에 대해 양호한 평가함수를 학습하였다. 학습의 과정에서 일련의 기물의 이동에 있어서 인접한 평가치들의 차이만을 줄이는 Temporal Difference학습과는 달리, 기물의 이동에 따른 평가치에 대해 갱신된 평가치들을 이용하여 평가함수를 학습함으로써 최적의 전략을 유도할 수 있는 Q학습알고리즘을 사용하였다. 일반적으로 많은 학습을 통하여 평가함수의 정확도가 보장되면 승률이 학습의 양에 비례함을 알 수 있었다.

라마키안 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계 (An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation)

  • 이한별;김대진
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.384-389
    • /
    • 1998
  • 본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터(퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규\ulcorner 수, 근사화 능력, 제어 성능등 모든면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.

  • PDF

신경망을 이용한 정상·비정상 얼굴유형 탐지 연구 (A Research on Anomaly type of face detection using Neural Network)

  • 김운영;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.623-624
    • /
    • 2009
  • 본 논문에서는 신경망의 오류 역전파(Backpropagation) 학습 알고리즘을 이용한 얼굴의 정상 비정상을 인식하는 보안 시스템을 제안하였다. 제안된 시스템은 정지영상 및 동영상에서 입력된 얼굴영상을 전처리 단계에서 얼굴영역을 검출하여 $160{\times}160$ 크기의 고정 크기로 확대 및 축소 작업을 거친다. Mosaic 처리와 LaplacianEdge 처리를 거쳐 $40{\times}40$ 크기로 이진화한 정규화 데이터를 Gravity-Center 처리를 한다. 오류 역전파 학습 알고리즘으로 얼굴의 특징을 학습한 후 각종 정상 및 비정상 얼굴 데이터를 이용하여 인식률을 실험 하였다. 실험데이터는 이 분야의 공인 자료인 LFW Face Database[7] 데이터를 사용하였으며, 실험결과는 제안된 방법이 문제 해결에 적합한 접근임을 보여준다.

선형 신경 회로망을 이용한 영상 Thinning 구현

  • 박병준;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.27-30
    • /
    • 2000
  • 본 논문에서는 선형 이진 신경회로망(Linear Binary Neural Network)을 이용하여 이진 영상으로부터 골격(skeleton)을 추출하는 병렬 구조를 제안하였다. 기존의 골격 추출 알고리즘으로부터 이진함수를 추출하고 이를 MSP Term Grouping Algorithm을 이용하여 학습시켰다. 결과에서는 기존의 역전파(Back-propagation) 학습알고리즘을 사용한 신경회로망보다 더 쉽게 하드웨어로 구현할 수 있음을 보여준다.

  • PDF

오차 역전파 알고리즘을 이용한 전파신호 추적 연구 (A Study of Radio Signal Tracking using Error Back Propagation)

  • 김홍기;김현빈;신욱현;이원돈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.226-229
    • /
    • 2001
  • 전파신호의 추적은 국방을 비롯한 다양한 분야에서 여러 가지 기술 발전을 이루고 있다. 특히 시간의 경과에 따라 변경되는 PRI 및 주파수를 갖는 전파에 대해서는 Adaptable한 추적 능력을 필요로 한다. 본 논문에서는 다양하게 변하는 PRI 및 주파수 변경 신호들에 대해 지능적으로 적응해 가면서 추적할 수 있는 추적 방식을 제안하고 이를 실험하였다. 제안된 방식은 신경회로망의 오차 역전과 알고리즘을 이용한 방법으로, 모의 전파 신호를 시간 구간으로 나누어 학습하였고 이에 대한 성능 테스트를 한 결과 제안된 방법이 전파 신호를 효율적으로 추적할 수 있음을 확인하였다.

  • PDF