본 연구에서는 역전파(backpropagationlk)학습 알고리즘에 대체될 수 있는 전방향 학습 알고리즘에 준하는 혼합 인식모형을 구성한다. 본 알고리즘은 Nikhil R. Pal (1993)이 제안한 GLVQ(Generalized Learning Vector Quantization)를 이용하여 패턴을 클러스터링 한 다음 비유사성(dissimilarity)을 가진 패턴끼리 재구성(regrouping) 하여 단순 퍼셉트론(simple perceptron)을 이용하여 group별 학습을 한다. 일반적으로 역전파학습인 학습시간이 많이 소요된다는 단점이 있다[1]. 본 알고리즘의 특징으로 는 feed-forward학습이기 때문에 학습시간이 단축될 뿐만 아니라 전체 패턴을 그룹별 로 나누어 학습을 하기 때문에 인식률도 향상 시킬 수 있다. 본 알고리즘에 적용한 데 이타는 250개의 ASCII코드를 16$\times$8격자에 정규화시킨 비트 패턴(bit pattern)을 이용 하였다. 실험결과 250개의 패턴을 10개의 클러스터로 나누어 학습을 시켰을 때 각 클 러스터별 평균반복횟수 94.7회만에 250개의 ASCII코드를 100% 인식할 수 있었다.
본 논문에서는 이러한 문제점을 해결하기 위해서 발전기 고정자의 가진 주파수의 거동패턴을 모델링하고 거동패턴의 위상변화를 학습패턴으로 만들어 오류 역전파 알고리즘으로 학습시킴으로써 고정자 권선 단말부에 대한 상태 감시한다. 고정자 모사장치를 구성하고 장치로부터 가진 데이터를 획득하여 실험한 결과 가진 주파수에서 일정한 형태의 거동패턴을 보였으며, 거동을 학습패턴으로 만들어 오류 역전파 알고리즘에 적용한 결과 뛰어난 성능을 보였다.
강화학습의 한가지 방법인 Q-learning은 최근에 Linear Quadratic Regulation(이하 LQR) 문제에 성공적으로 적용된 바 있다. 특히, 시스템 모델의 파라미터에 대한 구체적인 정보없이 적절한 입ㆍ출력만으로 학습을 통해 문제의 해결이 가능하므로 상황에 따라 매우 실용적인 방법이 될 수 있다. 뉴럴-큐 기법은 이러한 Q-learning의 Q-value를 MLP(multilayer perceptron) 신경망의 출력으로 대치시켜, 비선형 시스템의 최적제어 문제를 다룰 수 있게 한 방법이다. 그러나, 뉴럴-큐 기법은 신경망의 구조를 먼저 결정한 후 역전파 알고리즘을 이용해 학습하는 절차를 행하므로, 시행착오를 통해 신경망 구조를 결정해야 한다는 점, 역전파 알고리즘의 적용에 따라 신경망의 연결강도 값들이 지역적 최적해로 수렴한다는 점등의 문제점이 있다. 본 논문에서는 뉴럴-큐 학습의 도구로 KFD회귀를 이용하여 Q 함수의 근사 기법을 제안하고 관련 수식을 유도하였다. 그리고, 모의 실험을 통하여, 제안된 뉴럴-큐 방법의 적용 가능성을 알아보았다.
본 연구에서는 퍼지 클러스터링 알고리즘과 변수선택 방법을 이용하여 모델의 구조 동정을 행하고, 신경회로망의 Back-propagation 학습방법을 이용하여 파라메터동정을 행하 는 새로운 퍼지모델링 알고리즘을 제안하였다. 실제 데이터를 이용하여 전력부하예측시스템 을 설계하였으며 그 결과 타당성을 입증하였다.
본 논문은 2인용 보드게임의 정보에 대한 전략을 학습할 수 있는 방법을 역전파 신경회로망과 Q학습알고리즘을 이용하여 제안하였다. 학습의 과정은 단순히 상대프로세스와의 대국에 의하여 이루어진다. 시스템의 구성은 탐색을 담당하는 부분과 기물의 수를 발생하는 부분으로 구성되어 있다. 수의 발생부분은 보드의 상태에 따라서 갱신되고, 탐색커널은 αβ 탐색을 기본으로 역전파 신경회로망과 Q학습을 결합하여 게임에 대해 양호한 평가함수를 학습하였다. 학습의 과정에서 일련의 기물의 이동에 있어서 인접한 평가치들의 차이만을 줄이는 Temporal Difference학습과는 달리, 기물의 이동에 따른 평가치에 대해 갱신된 평가치들을 이용하여 평가함수를 학습함으로써 최적의 전략을 유도할 수 있는 Q학습알고리즘을 사용하였다. 일반적으로 많은 학습을 통하여 평가함수의 정확도가 보장되면 승률이 학습의 양에 비례함을 알 수 있었다.
본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터(퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규\ulcorner 수, 근사화 능력, 제어 성능등 모든면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.
본 논문에서는 신경망의 오류 역전파(Backpropagation) 학습 알고리즘을 이용한 얼굴의 정상 비정상을 인식하는 보안 시스템을 제안하였다. 제안된 시스템은 정지영상 및 동영상에서 입력된 얼굴영상을 전처리 단계에서 얼굴영역을 검출하여 $160{\times}160$ 크기의 고정 크기로 확대 및 축소 작업을 거친다. Mosaic 처리와 LaplacianEdge 처리를 거쳐 $40{\times}40$ 크기로 이진화한 정규화 데이터를 Gravity-Center 처리를 한다. 오류 역전파 학습 알고리즘으로 얼굴의 특징을 학습한 후 각종 정상 및 비정상 얼굴 데이터를 이용하여 인식률을 실험 하였다. 실험데이터는 이 분야의 공인 자료인 LFW Face Database[7] 데이터를 사용하였으며, 실험결과는 제안된 방법이 문제 해결에 적합한 접근임을 보여준다.
본 논문에서는 선형 이진 신경회로망(Linear Binary Neural Network)을 이용하여 이진 영상으로부터 골격(skeleton)을 추출하는 병렬 구조를 제안하였다. 기존의 골격 추출 알고리즘으로부터 이진함수를 추출하고 이를 MSP Term Grouping Algorithm을 이용하여 학습시켰다. 결과에서는 기존의 역전파(Back-propagation) 학습알고리즘을 사용한 신경회로망보다 더 쉽게 하드웨어로 구현할 수 있음을 보여준다.
전파신호의 추적은 국방을 비롯한 다양한 분야에서 여러 가지 기술 발전을 이루고 있다. 특히 시간의 경과에 따라 변경되는 PRI 및 주파수를 갖는 전파에 대해서는 Adaptable한 추적 능력을 필요로 한다. 본 논문에서는 다양하게 변하는 PRI 및 주파수 변경 신호들에 대해 지능적으로 적응해 가면서 추적할 수 있는 추적 방식을 제안하고 이를 실험하였다. 제안된 방식은 신경회로망의 오차 역전과 알고리즘을 이용한 방법으로, 모의 전파 신호를 시간 구간으로 나누어 학습하였고 이에 대한 성능 테스트를 한 결과 제안된 방법이 전파 신호를 효율적으로 추적할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.