• Title/Summary/Keyword: 역전파신경회로망

Search Result 158, Processing Time 0.022 seconds

The Optimal Construction of Multilayer Neural Network Model Topology (다층 신경회로망 모델 Topology의 최적 구성)

  • 이인재;정성부;임중규;이현관;정지원;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.155-158
    • /
    • 1998
  • 다층 신경회로망의 모델의 크기는 적용분야에 따라서 임의로 선택되어지고, 최적의 네트워크 크기는 긴 시간에 걸친 시행착오를 통하여 결정된다. 본 논문에서는 은닉충의 뉴런 수를 학습 과정에서 유동적으로 결정하는 역전파 알고리즘을 제안한다. 기존의 Narendra의 모델의 동정에 대하여 제안한 알고리즘의 유용성을 비교 검토하였다.

  • PDF

냉각재펌프 진동진단의 온-라인화에 관한 연구

  • 이철권;박희윤;박진석;구인수;하재흥
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.233-238
    • /
    • 1997
  • 위그너분포(Wigner Distribution)를 이용하여 진동신호를 분석하고, 신경회로망을 이용하여 온라인으로 진동발생에 따른 냉각재펌프의 이상상태를 진단하고자 하였다. 진동신호 분석을 위하여 현재 정상 가동중인 원전 냉각재펌프의 진동신호와 Rotor Kit으로부터 이상상태에 대한 모의신호를 추출하였다. 본 연구에서 진동신호 분석을 위하여 시간 및 주파수성분을 동시에 표현가능한 위그너분포 이론을 적용하므로써 기존의 시간 및 주파수성분을 별도로 표현하던 방법보다 신호분석이 용이함을 확인하였으며, 이 신호분석 결과를 바탕으로 역전파 신경회로망의 패턴인식 및 분류 특징을 이용한 진단결과는 실험데이타 량에 비추어 만족할 만한 인식률을 보였다.

  • PDF

Acceleration of Learning speed Neural Networks by Reducing Weight Oscillations (가중치 진동의 감소를 이용한 신경회로망의 학습속도 향상)

  • 임빈철;박동조
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.251-254
    • /
    • 1998
  • 본 논문에서는 신경회로망의 수렴속도를 높이기 위한 알고리즘을 제안한다. 전형적인 역전파 학습방식은 느린 수렴속도가 단점으로 제기되는데 이는 비용함수의 계곡부근에서 가중치의 궤적이 심한 진동현상을 보이기 때문이다. 이 문제를 해결하기 위해서 본 논문에서는 경사법에서 사용되는 갱신방향을 계곡의 진행방향을 이용하여 변경한다. 모의실험을 통하여 제안된 방법으로 가중치의 궤적에 나타나는 진동을 줄이고 수렴속도를 향상시킬 수 있음을 보인다.

  • PDF

Speech and Noise Recognition System by Neural Network (신경회로망에 의한 음성 및 잡음 인식 시스템)

  • Choi, Jae-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • This paper proposes the speech and noise recognition system by using a neural network in order to detect the speech and noise sections at each frame. The proposed neural network consists of a layered neural network training by back-propagation algorithm. First, a power spectrum obtained by fast Fourier transform and linear predictive coefficients are used as the input to the neural network for each frame, then the neural network is trained using these power spectrum and linear predictive coefficients. Therefore, the proposed neural network can train using clean speech and noise. The performance of the proposed recognition system was evaluated based on the recognition rate using various speeches and white, printer, road, and car noises. In this experiment, the recognition rates were 92% or more for such speech and noise when training data and evaluation data were the different.

Performance Improvement of Controller using Fuzzy Inference Results of System Output (시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선)

  • 이우영;최홍문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.77-86
    • /
    • 1995
  • The new architecture that fuzzy logic control(FLC) with difficulties for tuning membership function (MF) is parallel with neural networks(NN) to be learned from the output of FLC is proposed. Therefore proposed scheme has the characteristics to utilize the expert knowledge in design process, to be learned during the operation without any learning mode. In this architecture, the function of the FLC is to supply the sliding surface which is constructed on the phase plane by rule base for giving the desired control characteristics and learning criterion of NN and the stabilization of the control performance before NN is learned, The function of the NN is to let the system trajectory be tracked to the sliding surface and reached to the stable point.

  • PDF

The Recognition System of Face using Polynomial Coefficients (다항계수를 이용한 얼굴 인식 시스템)

  • 신창훈;김윤호;류광렬;이주신
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.244-247
    • /
    • 1999
  • in this paper, we propose the recognition system of face using polynomial coefficients to recognize fact images using neural network. The system consists of following steps. First step, the sizes of fare images is reduced sizes of input images to 1/4 using wavelet transform. Second step, the polynomial coefficients is obtained from low frequency coefficient matrix after 3 level wavelet transform. Third step, polynomial coefficients is normalized. The of range of normalization is from -1 to 1. Last, Face images is trained and recognized using neural network with error back propagation algorithm.

  • PDF

3-axis stabilized spacecraft attitude control by neural network disturbance observer (신경망에 의한 외란 관측을 통한 3축 안정화 인공위성의 자세제어)

  • 한기혁;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.1-1
    • /
    • 2000
  • 본 논문에서는 3축이 연성되어 비선형 운동 방정식으로 표현되는 3축 안정화 인공위성 시스뎀에 입릭외란과 시스템의 불확실성이 존재할 경우에도 자제 정밀도를 유지하는 제어기를 설계한다. 비선헝 운동 방정식으로 표현되는 운동 방정식을 선형화하고 PID제어기를 구성하였다 선형화에 의한 시스템의 불확실성과 입력 외란을 신경회로망으로 추정하여 외란의 엉향을 제거하도록 구성된 PR제어기의 제어입력을 수정한다 수정된 제어입력은 외란을 상쇠시켜 시스템 출력에서 외란의 효과를 제거하게 된다. 신경회로망은 제어입력과 시스템 출력, 기준 운동 방정식간의 관계를 이용하여 외간과 시스템의 불확실성을 추정하며, 역전파 알고리즘을 사용한 학습 알고리즘으로 신경 회로망을 교육한다. 제안된 신경회로망을 이용한 외란 제거 제어기는 시뮬레이션을 통하여 자세 정밀도의 향상을 검증한다

Semiconductor Wafer ID Recognition System using an Improved Neural Network (개선된 신경회로망을 이용한 반도체 Wafer ID 인식시스템)

  • 조영임
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.549-552
    • /
    • 2004
  • 본 논문에서는 반도체의 Wafer ID 문자인식을 위해 기존의 오류 역전파 학습알고리즘을 개선하여 최적의 학습 학습 조건에 관해 연구하였다. 결과, 오류 역전파 학습알고리즘의 학습 최적 조건은 은닉층수는 1층, n값은 0.6 이상, 은닉층 노드수는 10개일 때 99%의 높은 인식률을 보였다 본 논문에서 제안하는 최적조건물 사용함으로써 기존의 오류역전파 학습 알고리즘이 가진 문제점을 해결할 수 있었다.

  • PDF

Design of an Action Selector for Soccer Robot Systems Using Multilayer Neural Networks (다층신경회로망을 이용한 축구 로봇시스템의 행동선택기 설계)

  • Son, Chang-Woo;Kim, Do-Hyun;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.658-660
    • /
    • 1999
  • 본 논문에서는 축구로봇 시스템에서 상위 레벨 제어기에 해당하는 행동선택기를 다층신경회로망을 이용하여 설계한다. 축구로봇 시스템에서 로봇의 속도가 빠른 상태에서 제어가 가능하도록 로봇의 행동레벨을 설정하고 주어진 동적 상황에 대해 여러 가지 상황변수를 정의하여, 각 상황에 가장 효율적이며 최적의 행동을 선택하도록 한다. 각 로봇이 목표점으로 이동할 때 어떠한 행동을 선택하여 어떻게 움직이느냐에 따라 로봇은 같은 위치에서 목표점을 이동하더라도 이동경로가 달라진다. 따라서, 로봇축구 경기 상황을 나타내는 상황 변수들을 입력으로 하는 다층신경회로망을 사용하여 출력으로 행동을 판단하여 실행하는 알고리즘을 제안하고 그를 위한 하드웨어와 시뮬레이터 도구를 제작한다. 역전파 알고리즘을 통해 신경망을 학습하고 학습된 데이터를 실험에 적용한다.

  • PDF

A Study on the Identification and Speed Control of Diesel Engines Using Neural Networks (신경회로망을 이용한 디젤기관의 동정과 속도제어에 관한 연구)

  • K-Y kim;Y-H Yu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.705-711
    • /
    • 2002
  • 디젤기관은 실린더 내경의 크기, 실린더 수 및 회전수에 따라 착화지연, 연소지연 및 디젤기관의 각종 정수가 달라지므로 비선형이 심한 시스템이다. 본 연구에서는 신경회로망을 이용하여 발전기를 구동하는 디젤 기관의 속도를 제어하는 디젤기관 신경회로망 디지털조속기를 제안한다. 이를 위하여 3상 50㎾ 발전기를 구동하는 4행정 4실린더, 1800 rpm ISUTSU 디젤기관의 실제 운전데이터로부터 뉴럴에뮬레이터를 구한다. 최적치 뉴럴에뮬레이터 구성을 위하여 다양한 역전파알고리즘으로 학습을 행하고 결과를 비교한다. 또한 디젤기관의 역으로부터 뉴럴 제어기를 구성하고 뉴럴에뮬레이터로 시뮬레이션을 행한다. 외란이 존재하는 경우에도 효과적인 뉴럴제어기를 구성하기 위하여 선택적 뉴럴제어 기의 사용을 제안한다. 또한 응답성을 향상하고 정확한 목표치추종을 위하여 PI제어기를 보조제어기로 사용하는 하이브리드제어기를 구성하여 시뮬레이션을 통하여 성능이 향상됨을 보인다.