• Title/Summary/Keyword: 역전파신경망

Search Result 11, Processing Time 0.028 seconds

Prediction for the Error due to Role Eccentricity in Hole-drilling Method Using Backpropagation Neural Network (역전파신경망을 이용한 구멍뚫기법의 편심 오차 예측)

  • Kim, Cheol;Yang, Won-Ho;Heo, Sung-Pil;Chung, Ki-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.436-444
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is predicted using the artificial neural network. The neural network has trained training examples of stress ratio, normalized eccentricity, off-centered direction and stress error using backpropagation learning process. The prediction results of the error using the trained neural network are good agreement with FE analyzed ones.

Analysis of Composition Chord Based on Back-propagation Neural Network (역전파 신경망을 이용한 작곡 코드 분석)

  • Jo Jae-Young;Kim Yoon-Ho;Lee Myung-kil
    • Journal of Digital Contents Society
    • /
    • v.5 no.3
    • /
    • pp.245-249
    • /
    • 2004
  • This paper shows the reconstruction of existing composition chord program using back propagation neural network. In this approach, in order to produce the expectation values, weight values are controlled by neural network which rued chord pattern as a input vector. Experimental results showed that proposed approach is superior to a popular chord pattern method rather than existing composition program.

  • PDF

Adaption of Neural Network Algorithm for Pattern Recognition of Weld Flaws (용접결함 패턴인식을 위한 신경망 알고리즘 적용)

  • Kim, Chang-Hyun;Yu, Hong-Yeon;Hong, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • In this study, we used nondestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of weld flaws. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from weld flaws in time domain. Through this process, we compared advantages/ disadvantages of two algorithms and confirmed application methods of two algorithms.

인공신경망을 응용한 접속케이블 자동검사시스템

  • 이문규;윤찬균
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.273-284
    • /
    • 1995
  • 카메라를 통하여 얻은 영상자료로부터 대상물의 특징을 추출하여 검사에 응용하는 자동검사기법의 수요가 늘고 있다. 본 연구에서는 그러한 자동검사의 실예로서 접속 케이블(wire hardness)의 색깔인식을 이용한 양/불량을 구별하는 시스템을 구축하였다. 색깔인식을 위한 도구로서 입력층, 1개의 은닉층 및 출력층으로 이루어진 2층 구조의 역전파신경망(back-propagation neural network)을 사용하였다. 입력자료로는, 화상에서 케이블의 위치를 파악하고 그 케이블에 속한 화소로부터 필요한 정보(Y, U, V)를 추출한 후, 보다 변별력이 좋은 (L, a, b) 좌표계로 변환하여 사용하였다. 본 검사시스템은 인식속도를 향상시키기 위하여 영상정보를 프레임 버퍼(frame buffer)에서 직접 사용하고 자료의 검사과정을 극소화 하였기 때문에 불량품의 실시간 검출이 가능하다. 불량품 검출의 성능을 평가하기 위하여 실제 표본을 가지고 시스템의 성능을 평가한 결과, 양/불량의 인식율이 100%를 나타내어 약간의 성능보완이 이루어지면 현장에서 바로 활용할 수 있을 것으로 판단된다.

  • PDF

Performance Evaluation of Linear Regression, Back-Propagation Neural Network, and Linear Hebbian Neural Network for Fitting Linear Function (선형함수 fitting을 위한 선형회귀분석, 역전파신경망 및 성현 Hebbian 신경망의 성능 비교)

  • 이문규;허해숙
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.17-29
    • /
    • 1995
  • Recently, neural network models have been employed as an alternative to regression analysis for point estimation or function fitting in various field. Thus far, however, no theoretical or empirical guides seem to exist for selecting the tool which the most suitable one for a specific function-fitting problem. In this paper, we evaluate performance of three major function-fitting techniques, regression analysis and two neural network models, back-propagation and linear-Hebbian-learning neural networks. The functions to be fitted are simple linear ones of a single independent variable. The factors considered are size of noise both in dependent and independent variables, portion of outliers, and size of the data. Based on comutational results performed in this study, some guidelines are suggested to choose the best technique that can be used for a specific problem concerned.

  • PDF

Study on Fault Diagnostics of a Turboprop Engine Using Fuzzy Logic and BBNN (퍼지와 역전파신경망 기법을 사용한 터보프롭 엔진의 진단에 관한 연구)

  • Kong, Chang-Duk;Lim, Se-Myung;Kim, Keon-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • The UAV(Unmanned Aerial Vehicle) which is remotely operating with long endurance in high altitude must have a very reliable propulsion system. The precise fault diagnostic system of the turboprop engine as a propulsion system of this type UAV can promote reliability and availability. This work proposes a diagnostic method which can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. It is found by evaluation examples that the proposed diagnostic method can detect well not only single type faults but also multiple type faults.

Study on Fault Diagnostics of a Turboprop Engine Using Fuzzy Logic and BBNN (퍼지와 역전파신경망 기법을 사용한 터보프롭 엔진의 진단에 관한 연구)

  • Kong, Chang-Duk;Lim, Se-Myung;Kim, Keon-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.499-505
    • /
    • 2010
  • The UAV(Unmanned Aerial Vehicle) which is remotely operating with long endurance in high altitude must have a very reliable propulsion system. The precise fault diagnostic system of the turboprop engine as a propulsion system of this type UAV can promote reliability and availability. This work proposes a diagnostic method which can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. It is found by evaluation examples that the proposed diagnostic method can detect well not only single type faults but also multiple type faults.

  • PDF

Optimization of Transonic Airfoil Using GA Based on Neural Network and Multiple Regression Model (유전 알고리듬과 반응표면을 이용한 천음속 익형의 최적설계)

  • Kim, Yun-Sik;Kim, Jong-Hun;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2556-2564
    • /
    • 2002
  • The design of airfoil had practiced by repeat tests in its first stage, though an airfoil has as been designed based on simulations according to techniques of computational fluid dynamics. Here, using of traditional optimization is unsuitable because a state of flux is hypersensitive to the shape of airfoil. Therefore the paper optimized the shape of airfoil in transonic region using a genetic algorithm (GA). Response surfaces are based on back propagation neural network (BPN) and regression model. Training data of BPN and regression model were obtained by computational fluid dynamic analysis using CFD-ACE, and each analysis has been designed by design of experiments.

Optimization of T-Structure Supporting Steering System Using μGA (승용차용 스티어링시스템 지지 T-형구조물의 최적설계)

  • Lee Jong Soo;Kim Sung Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.809-814
    • /
    • 2005
  • The goal of this paper is to minimize the weight of the T-structure supporting steering system in reducing the vibration level on steering wheel which could be amplified by the resonance. Presently, requirements for reducing noise, vibration and harshness (NVH) in automotive area are more stringent than ever. One of them is the vibration of steering system which occurs sometimes at high speeds or when the engine is idling. Besides, the reduction of weight is also one of requirements for improvement of vehicle performance. This paper used the micro genetic algorithm as an optimization method to satisfy above two requirements. The whole T-structure assembly including steering column was used for frequency analysis.

Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms (반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process