• Title/Summary/Keyword: 역원근 변환

Search Result 8, Processing Time 0.037 seconds

Detection of direction indicators on road surfaces using Inverse Perspective Mapping and NN (역원근 변환과 신경망을 사용한 효율적인 도로노면 방향지시기호 검출 연구)

  • Kim, Jong-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.1199-1202
    • /
    • 2014
  • 본 논문은 차량에 설치된 블랙박스 영상으로부터 도로 노면에 표시된 방향지시 기호를 효율적으로 검출하는 방안을 제안한다. 차량 내부에 설치된 블랙박스 영상은 카메라의 원근 효과로 인해 방향지시 기호 영역을 올바르게 검출하지 못하는 문제점이 존재한다. 따라서 제안한 연구에서는 원근 효과를 가진 입력 영상에서 역원근 변환 방법을 통해 원근 효과를 제거한 실세계 좌표로 맵핑한 평면 영상에서 방향지시 기호 영역을 신경망 검출기를 통해 검출한다. 입력 영상에서 역 원근 변환은 높은 계산량으로 인해 실시간 처리가 어려운 점이 존재한다. 이를 보완하기 위해 제안한 방안에서는 입력 영역의 도로노면 방향지시 기호 영역의 특징을 분석하여 도로노면 기호가 포함된 후보 ROI영역을 정의하고 후보 ROI 영역의 Gray 색상에서 역원근 변환을 수행한다. 제안한 방안을 도로노면 방향지시 기호 검출 및 인식 연구에 적용한 결과, 약 87% 이상 비교적 정확히 검출율을 제시하였으며, 다양한 도로 환경에서도 높은 검출율을 제시하였다. 따라서 제안한 방안을 운전자의 안전운전지원시스템에 적용함으로써 보다 정확한 도로정보 제공시스템 적용이 가능함을 알 수 있다.

Detection of Direction Indicators on Road Surfaces Using Inverse Perspective Mapping and NN (원근투영법과 신경망을 이용한 도로노면 방향지시기호 검출 연구)

  • Kim, Jong Bae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.201-208
    • /
    • 2015
  • This paper proposes a method for detecting the direction indicator shown in the road surface efficiently from the black box system installed on the vehicle. In the proposed method, the direction indicators are detected by inverse perspective mapping(IPM) and bag of visual features(BOF)-based NN classifier. In order to apply the proposed method to real-time environments, the candidated regions of direction indicator in an image only performs IPM, and BOF-based NN is used for the classification of feature information from direction indicators. The results of applying the proposed method to the road surface direction indicators detection and recognition, the detection accuracy was presented at least about 89%, and the method presents a relatively high detection rate in the various road conditions. Thus it can be seen that the proposed method is applied to safe driving support systems available.

Development of a Lane Sensing Algorithm Using Vision Sensors (비전 센서를 이용한 차선 감지 알고리듬 개발)

  • Park, Yong-Jun;Heo, Geon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1666-1671
    • /
    • 2002
  • A lane sensing algorithm using vision sensors is developed based on lane geometry models. The parameters of the lane geometry models are estimated by a Kalman filter and utilized to reconstruct the lane geometry in the global coordinate. The inverse perspective mapping from image plane to global coordinate assumes earth to be flat, but roll and pitch motions of a vehicle are considered from the perspective of the lane sensing. The proposed algorithm shows robust lane sensing performance compared to the conventional algorithms.

A Study on Lane Sensing System Using Stereo Vision Sensors (스테레오 비전센서를 이용한 차선감지 시스템 연구)

  • Huh, Kun-Soo;Park, Jae-Sik;Rhee, Kwang-Woon;Park, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.230-237
    • /
    • 2004
  • Lane Sensing techniques based on vision sensors are regarded promising because they require little infrastructure on the highway except clear lane markers. However, they require more intelligent processing algorithms in vehicles to generate the previewed roadway from the vision images. In this paper, a lane sensing algorithm using vision sensors is developed to improve the sensing robustness. The parallel stereo-camera is utilized to regenerate the 3-dimensional road geometry. The lane geometry models are derived such that their parameters represent the road curvature, lateral offset and heading angle, respectively. The parameters of the lane geometry models are estimated by the Kalman filter and utilized to reconstruct the lane geometry in the global coordinate. The inverse perspective mapping from the image plane to the global coordinate considers roll and pitch motions of a vehicle so that the mapping error is minimized during acceleration, braking or steering. The proposed sensing system has been built and implemented on a 1/10-scale model car.

Development of A Vision-based Lane Detection System with Considering Sensor Configuration Aspect (센서 구성을 고려한 비전 기반 차선 감지 시스템 개발)

  • Park Jaehak;Hong Daegun;Huh Kunsoo;Park Jahnghyon;Cho Dongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.97-104
    • /
    • 2005
  • Vision-based lane sensing systems require accurate and robust sensing performance in lane detection. Besides, there exists trade-off between the computational burden and processor cost, which should be considered for implementing the systems in passenger cars. In this paper, a stereo vision-based lane detection system is developed with considering sensor configuration aspects. An inverse perspective mapping method is formulated based on the relative correspondence between the left and right cameras so that the 3-dimensional road geometry can be reconstructed in a robust manner. A new monitoring model for estimating the road geometry parameters is constructed to reduce the number of the measured signals. The selection of the sensor configuration and specifications is investigated by utilizing the characteristics of standard highways. Based on the sensor configurations, it is shown that appropriate sensing region on the camera image coordinate can be determined. The proposed system is implemented on a passenger car and verified experimentally.

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Kim, S.H.;Lee, D.H.;Lee, M.H.;Be, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2843-2845
    • /
    • 2000
  • A lane detection based on a road model or feature all need correct acquirement of information on the lane in a image, It is inefficient to implement a lane detection algorithm through the full range of a image when being applied to a real road in real time because of the calculating time. This paper defines two searching range of detecting lane in a road, First is searching mode that is searching the lane without any prior information of a road, Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It is allow to extract accurately and efficiently the edge candidates points of a lane as not conducting an unnecessary searching. By means of removing the perspective effect of the edge candidate points which are acquired by using the inverse perspective transformation, we transform the edge candidate information in the Image Coordinate System(ICS) into the plane-view image in the World Coordinate System(WCS). We define linear approximation filter and remove the fault edge candidate points by using it This paper aims to approximate more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.

  • PDF

Stop Object Method within Intersection with Using Adaptive Background Image (적응적 배경영상을 이용한 교차로 내 정지 객체 검출 방법)

  • Kang, Sung-Jun;Sur, Am-Seog;Jeong, Sung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2430-2436
    • /
    • 2013
  • This study suggests a method of detecting the still object, which becomes a cause of danger within the crossroad. The Inverse Perspective Transform was performed in order to make the object size consistent by being inputted the real-time image from CCTV that is installed within the crossroad. It established the detection area in the image with the perspective transform and generated the adaptative background image with the use of the moving information on object. The detection of the stop object was detected the candidate region of the stop object by using the background-image differential method. To grasp the appearance of truth on the detected candidate region, a method is proposed that uses the gradient information on image and EHD(Edge Histogram Descriptor). To examine performance of the suggested algorithm, it experimented by storing the images in the commuting time and the daytime through DVR, which is installed on the cross street. As a result of experiment, it could efficiently detect the stop vehicle within the detection region inside the crossroad. The processing speed is shown in 13~18 frame per second according to the area of the detection region, thereby being judged to likely have no problem about the real-time processing.

Robust Vision Based Algorithm for Accident Detection of Crossroad (교차로 사고감지를 위한 강건한 비젼기반 알고리즘)

  • Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.117-130
    • /
    • 2011
  • The purpose of this study is to produce a better way to detect crossroad accidents, which involves an efficient method to produce background images in consideration of object movement and preserve/demonstrate the candidate accident region. One of the prior studies proposed an employment of traffic signal interval within crossroad to detect accidents on crossroad, but it may cause a failure to detect unwanted accidents if any object is covered on an accident site. This study adopted inverse perspective mapping to control the scale of object, and proposed different ways such as producing robust background images enough to resist surrounding noise, generating candidate accident regions through information on object movement, and by using edge information to preserve and delete the candidate accident region. In order to measure the performance of proposed algorithm, a variety of traffic images were saved and used for experiment (e.g. recorded images on rush hours via DVR installed on crossroad, different accident images recorded in day and night rainy days, and recorded images including surrounding noise of lighting and shades). As a result, it was found that there were all 20 experiment cases of accident detected and actual effective rate of accident detection amounted to 76.9% on average. In addition, the image processing rate ranged from 10~14 frame/sec depending on the area of detection region. Thus, it is concluded that there will be no problem in real-time image processing.