• Title/Summary/Keyword: 역수

Search Result 186, Processing Time 0.023 seconds

Correlation analysis between energy indices and source-to-node shortest pathway of water distribution network (상수도관망 수원-절점 최소거리와 에너지 지표 상관성 분석)

  • Lee, Seungyub;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.989-998
    • /
    • 2018
  • Connectivity between water source and demand node can be served as a critical system performance indicator of the degree of water distribution network (WDN)' failure severity under abnormal conditions. Graph theory-based approaches have been widely applied to quantify the connectivity due to WDN's graph-like topological feature. However, most previous studies used undirected-unweighted graph theory which is not proper to WDN. In this study, the directed-weighted graph theory was applied for WDN connectivity analyses. We also proposed novel connectivity indicators, Source-to-Node Shortest Pathway (SNSP) and SNSP-Degree (SNSP-D) which is an inverse of the SNSP value, that does not require complicate hydraulic simulation of a WDN of interest. The proposed SNSP-D index was demonstrated in total 42 networks in J City, South Korea in which Pearson Correlation Coefficient (PCC) between the proposed SNSP-D and four other system performance indicators was computed: three resilience indexes and an energy efficiency metric. It was confirmed that a system representative value of the SNSP-D has strong correlation with all resilience and energy efficiency indexes (PCC = 0.87 on average). Especially, PCC was higher than 0.93 with modified resilience index (MRI) and energy efficiency indicator. In addition, a multiple linear regression analysis was performed to identify the system hydraulic characteristic factors that affect the correlation between SNSP-D and other system performance indicators. The proposed SNSP is expected to be served as a useful surrogate measure of resilience and/or energy efficiency indexes in practice.

Variable Optical Fiber Attenuator Using Bending-Sensitive Fiber (굽힘에 민감한 광섬유를 이용한 가변 광 감쇄기)

  • 이동호;권광희;송재원;박재희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.566-573
    • /
    • 2004
  • A variable optical attenuator with a bending-sensitive fiber (BSF) that can be used in optical networks is developed. The proposed BSF consists of inner core, outer core, center dip and cladding. The proposed BSF is also very sensitive to mechanical perturbation, such as bending and pressure, making the light propagating in the BSF easily controlled and attenuated. The fabricated fiber-type variable optical attenuator using the proposed BSF (VOAFB) consisted of the BSF in a rectangular rubber ring with a fixed bend radius (BR) in a steady state. The variable optical attenuator using the proposed BSF (VOAFB) was able to attenuate the optical power by more than about -38㏈ with the gradient -88.4[㏈$.$$cm^{-1}$ /] at (1540∼1560nm) based m adjusting the mechanical pressure applied to the upper surface of the rectangular rubber ring with the bent BSF. According to the experimental results when using the proposed VOAFB, the optical power was easily controlled by adjusting mechanical pressure and produced an insertion loss of 0.68㏈, polarization loss of 0.5㏈, and return loss of less than -60㏈.

Development of Freezing Time Prediction Model and Thermo-physical Properties of Frozen Kimchi (김치 동결시의 물리적 특성 및 동결시간 예측 모델 개발)

  • 정진웅;김병삼;김종훈
    • Food Science and Preservation
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2003
  • This study was carried out to investigate the thermo-physical properties and design Freezing time prediction model from data of freezing test of Kimchi. Density of Kimchi were measured as 1001.9 ${\pm}$0.03 kg/㎥ at unfrozen state, 987.0 ${\pm}$0.07 kg/㎥ at frozen state and volume of the Kimchi expanded 4.67% at -l5$^{\circ}C$. Initial freezing point of Kimchi and seasoning were -4.0$^{\circ}C$ and -2.5$^{\circ}C$, respectively. Freezing ratio of Kimchi were estimated more than 50% at -5.0$^{\circ}C$, more than 75% at -l0$^{\circ}C$ and approximately 90% at -25$^{\circ}C$. To obtain equation for freezing time prediction of Kimchi, freezing time(Y) was regressed against the reciprocal( $X_3$) of difference of initial freezing point and freezing medium temperature, reciprocal( $X_4$) of surface heat transfer coefficient, the initial temperature( $X_1$) and thickness( $X_2$) of samples. As results of the multiple regression analysis, equations were obtained as follows. Y$_{kimchi}$=3.856 $X_1$+13982.8 $X_2$+8305.166 $X_3$+ 3559.181 $X_4$-639.189( $R^2$=0.9632). These equations shown better results than previous models, and the accuracy of its was very high as average absolute difference of about 10% in the difference between the fitted and experimental results.

A study on the visual integrated model of the fractional division algorithm in the context of the inverse of a Cartesian product (카테시안 곱의 역 맥락에서 살펴본 분수 나눗셈 알고리즘의 시각적 통합모델에 대한 연구)

  • Lee, Kwangho;Park, Jungkyu
    • Education of Primary School Mathematics
    • /
    • v.27 no.1
    • /
    • pp.91-110
    • /
    • 2024
  • The purpose of this study is to explore visual models for deriving the fractional division algorithm, to see how students understand this integrated model, the rectangular partition model, when taught in elementary school classrooms, and how they structure relationships between fractional division situations. The conclusions obtained through this study are as follows. First, in order to remind the reason for multiplying the reciprocal of the divisor or the meaning of the reciprocal, it is necessary to explain the calculation process by interpreting the fraction division formula as the context of a measurement division or the context of the determination of a unit rate. Second, the rectangular partition model can complement the detour or inappropriate parts that appear in the existing model when interpreting the fraction division formula as the context of a measurement division, and can be said to be an appropriate model for deriving the standard algorithm from the problem of the context of the inverse of a Cartesian product. Third, in the context the inverse of a Cartesian product, the rectangular partition model can naturally reveal the calculation process in the context of a measurement division and the context of the determination of a unit rate, and can show why one division formula can have two interpretations, so it can be used as an integrated model.

Nonlinear Rotating Flows in Eccentric Cylinders (편심환내의 비선형 회전 유동)

  • Sim, U-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.16-28
    • /
    • 2000
  • The steady rotating flows in eccentric annulus has been studied by a numerical method based on the spectral collocation method. The inner cylinder has a constant angular velocity while the outer on e is stationary. Flow between eccentric cylinders is of considerable technical importance as it occurs in journal bearings. In the present work, the governing equations for laminar flow are expressed as Navier-Stokes equations, including the non-linear convection terms. The solutions were utilized i, estimate the effects of the nonlinear terms on the load acting on the rotating cylinder. Based on the half and the full Sommerfeld methods, the load on the rotating cylinder is evaluated with eccentricity, by integrating the pressure and skin friction around the cylinder. The attitude angle and Sommerfeld reciprocal are calculated from the load. Also, the torque on the rotating inner cylinder was calculated. considering the skin friction. The attitude angle and Sommerfeld reciprocal are decreased with eccentricity. Viscous damping coefficient due to the skin friction becomes larger with decreasing the annular space. It is found the non-linear effects of the convection terms on the flow and the load are important. especially on the attitude angle, for relatively wide annular configurations however, the effects on those are minor for very narrow annular ones.

Rheological Properties of Rehydrated Freeze Dried Instant Rice (동결건조 즉석미반의 리올로지적 성질)

  • Kim, Kwan-Yu;Lee, Shin-Young;Joo, Hyun-Kyu
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.332-337
    • /
    • 1989
  • Rheological properties of rehydrated freeze dried instant rice were investigated in comparison with that of cooked rice. The time changes in reciprocal hardness of instant rice grains at various rehydration temperatures$(60{\sim}90^{\circ}C)$ could be expressed by the first order reaction rate equation regardless of rehydration temperature and reaction rate constant increased as the rehydration temperature increased. Activation energy for rehydrating instant rice was 6.1 kcal/g-mol. Analysis of compressive stress relaxation test showed that the viscoelastic properties of both rehydrated instant rice and cooked rice grains could be expressed by 6-elements generalized Maxwell model. Rehydrated instant rice revealed higher relaxation decay than that of cooked rice and showed the elastic property increased by increasing the rehydration temperature.

  • PDF

A study on the calculation model for emissivities of combustion gases (燃燒氣體의 放射率 計算模型에 관한 硏究)

  • 허병기;이청종;양지원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.904-912
    • /
    • 1987
  • The main mode of heat transfer of combustion gases at high temperature is thermal radiation of nonluminous gases, CO$_{2}$ and H$_{2}$O. Therefore the information of the emissivities of CO$_{2}$ and H$_{2}$O would be very important in the thermal performance analysis of furnace. In this study, an exponential model for the emissivities of CO$_{2}$ and H$_{2}$O was derived as function of P$_{g}$L and polynomial of reciprocal of temperature. Error analysis between the calculated values from present model and the valued of Hottel Chart was performed over temperature range of 1000-5000 R and a partial-pressure-length product range of 0.003 to 20 ft-atm. For CO$_{2}$ gray gas, the error percent between the calculated values and the values from Hottel Chart was distributed within 2.5% in case of using a polynomial in 1/T of degree 4. For H$_{2}$O gray gas, the model has an error range of 0 to 2.5% in case of using a polynomial in 1/T of degree 3.

Temperature Dependence of Photoluminescence in $SiO_2$ (실리콘산화막의 광루미니센스 온도의존성에 관한 연구)

  • 이재희
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.247-251
    • /
    • 2001
  • Photoluminescence(PL) were observed from room temperature to 8K on $Si^+$-implanted silicon-oxide films. The PL intensities are increased from room temperature to 50~80K and decreased below 50K. The blue-shift occurs during the increasing of PL intensity. Also, temperature-dependent PL were measured at peak wavelengths. The first peak is the most sensitive to the measuring temperature. The experimental results are explained by quantum size effect of O rich defects or(and) Si rich defects rather than nanocrystal silicon.

  • PDF

ECG Identification Method Using Adaptive Weight Based LMSE Optimization (적응적 가중치를 사용한 LMSE 최적화 기반의 심전도 개인 인식 방법)

  • Kim, Seok-Ho;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2015
  • This paper presents a Electrocardiogram(ECG) identification method using adaptive weight based on Least Mean Square Error(LMSE) optimization. With a preprocessing for noise suppression, we extracts the average ECG signal and its standard deviation at every time instant. Then the extracted information is stored in database. ECG identification is achieved by matching an input ECG signal with the information in database. In computing the matching scores, the standard deviation is used. The scores are computed by applying adaptive weights to the values of the input signal over all time instants. The adaptive weight consists of two terms. The first term is the inverse of the standard deviation of an input signal. The second term is the proportional one to the standard deviation between user SAECGs stored in the DB. Experimental results show up to 100% recognition rate for 32 registered people.

The Method for Estimating the Inverse Demand Curve of Cournot Model in Electricity Market (전력시장 적용을 위한 쿠르노 모델에서의 역수요함수 추정 방법 제안)

  • Kang Dong-Joo;Hur Jin;Kim Tae-Hyun;Moon Young-Hwan;Lee Keun-Dae;Chung Koo-Hyung;Kim Balho H.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.79-87
    • /
    • 2005
  • At present Cournot model is one of the most commonly used theories to analyze the gaming situation in oligopoly market. But there exist several problems to apply this model to electricity market. The representative one is to obtain the inverse demand curve able to be induced from the relationship between market price and demand response. In Cournot model, each player offers their generation quantity to accomplish maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears on the long-term basis through the statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium.