• Title/Summary/Keyword: 역문헌빈도 가중치

Search Result 16, Processing Time 0.024 seconds

Inverse Document Frequency Weighting Revisited (역문헌빈도 가중치의 재검토)

  • 이재윤
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.253-261
    • /
    • 2003
  • 역문헌빈도 가중치는 문헌 집단에서 출현빈도가 낮을수록 색인어의 중요도가 높다는 가정에 근거하고 있다. 이 연구에서는 역문헌빈도 가중치의 가정에 의문을 제기하고, 이를 보완하는 새로운 문헌빈도 가중치 공식을 제안하였다. 제안한 가중치 공식은 저빈도어가 아닌 중간빈도어가 더 중요하다는 가정에 근거한 것으로서 역시 문헌빈도를 이용한 함수이다. 문헌빈도에 의한 가중치를 문헌의 색인어에 부여하는 경우와 질의어에 부여하는 경우로 나누어서 실험을 수행하고, 두 경우의 차이점을 논하였다.

  • PDF

A Study on the Pivoted Inverse Document Frequency Weighting Method (피벗 역문헌빈도 가중치 기법에 대한 연구)

  • Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.4 s.50
    • /
    • pp.233-248
    • /
    • 2003
  • The Inverse Document Frequency (IDF) weighting method is based on the hypothesis that in the document collection the lower the frequency of a term is, the more important the term is as a subject word. This well-known hypothesis is, however, somewhat questionable because some low frequency terms turn out to be insufficient subject words. This study suggests the pivoted IDF weighting method for better retrieval effectiveness, on the assumption that medium frequency terms are more important than low frequency terms. We thoroughly evaluated this method on three test collections and it showed performance improvements especially at high ranks.

Weighting Methods for Compound Nouns in Patent Retrieval System (특허 문헌 검색에서 복합명사 가중치 부여 방법)

  • 손기준;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.895-897
    • /
    • 2004
  • 문서 검색 시스템에서 특정 주지에 관한 문서를 검색하기 위한 색인어의 가중치 부여 방법으로 단순빈도와 역문헌빈도에 의한 가중치 부여 방법을 주로 이용한다 하지만 빈도 정보만을 이용한 방법은 성능 및 정확도의 향상에 한계가 있다. 이에 본 논문에서는 특허 문헌 검색 시스템의 검색 효율을 높이기 위해 자주 출현하는 복합명사의 재출현 양상과 복합명사의 역할변화에 따른 가중치 부여 방법을 제안한다 본 연구에서 제안한 가중치 부여 방법을 이용하여 실험한 결과 단순빈도와 역문헌빈도 정보를 이용한 방법보다 더 나은 성능을 보였다 .

  • PDF

A Study on the Applicability of 2-Poisson Model for Selecting Korean Subject Words (2-포아송 모형을 이용한 한글 주제어 선정에 관한 연구)

  • 정영미;최대식
    • Journal of the Korean Society for information Management
    • /
    • v.17 no.1
    • /
    • pp.129-148
    • /
    • 2000
  • Experiments were performed on three subsets of a Korean test collection in order to determine whether 2-Poisson model's Z value is a good measure for selecting subject words from a document to be indexed. It was found that subject word selection based on the Z value was effective for only one subset with short texts, i.e., the Science and Technology subset. Correlation analyses between 2-Poisson model's Z and TF.IDF weight for the three subsets showed that the correlation was relatively high for two test subsets with short texts, i.e., the Science and Technology subset and the Newspaper subset.

  • PDF

A Study on Optimization of Support Vector Machine Classifier for Word Sense Disambiguation (단어 중의성 해소를 위한 SVM 분류기 최적화에 관한 연구)

  • Lee, Yong-Gu
    • Journal of Information Management
    • /
    • v.42 no.2
    • /
    • pp.193-210
    • /
    • 2011
  • The study was applied to context window sizes and weighting method to obtain the best performance of word sense disambiguation using support vector machine. The context window sizes were used to a 3-word, sentence, 50-bytes, and document window around the targeted word. The weighting methods were used to Binary, Term Frequency(TF), TF ${\times}$ Inverse Document Frequency(IDF), and Log TF ${\times}$ IDF. As a result, the performance of 50-bytes in the context window size was best. The Binary weighting method showed the best performance.

Improving the Effectiveness of Information Retrieval Using Data Fusion Method in the Vector and Neural Network Model (벡터와 신경망 모델에서 데이터 퓨전 기법을 이용한 정보검색의 효율성 향상)

  • 최성환
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2001.08a
    • /
    • pp.137-142
    • /
    • 2001
  • 본 논문에서는 벡터모델과 신경망 모델을 이용하여 데이터 퓨전의 관점에서 다중증거로서 가중치, 문헌분리가, 엔트로피, 공기유사도를 적절히 결합하여 질의를 확장하는 방법을 제안한다. 실험결과 코사인 정규화 가중치 알고리즘, 문서길이 정규화 가중치 알고리즘과 결합하여 질의를 확장하는 것이 정규화시키지 않고 단순히 문헌빈도와 역문헌빈도의 조합을 이용한 가중치 알고리즘과 결합했을 때 보다 평균 정확률 향상이 더 높게 나타났다. 또한 다양한 공기기반 유사도를 이용하여 질의확장을 한 결과 벡터모델과 신경망 모델에서 코사인 공기유사도에 기반하여 질의확장한 경우가 다른 공기유사도에 비해 더 좋은 성능을 보였다.

  • PDF

Relevance Feedback Experiments for Korean Information Retrieval Systems (한국어 정보검색 시스템을 위한 다양한 적합성 피드백 방법의 실험)

  • Park, Su-Hyeon;Gwon, Hyeok-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.5
    • /
    • pp.682-691
    • /
    • 1999
  • 정보검색 시스템의 검색 효율 향상을 위해서 다양한 적합성 피드백 방법이 개발되었다. 그러나 한국어 정보검색 시스템을 위한 적합성 피드백에 대한 연구는 거의 이루어지지 않은 실정이다. 이 논문에서는 기존에 개발된 적합성 피드백 방법을 한국어 정보 시스템에 적용하여 검색 효율을 비교하고, 새로운 적합성 피드백 방법을 개발 적용하여 기존의 방법들과 검색 효율을 비교분석하였다. 적합성 피드백은 원질의문을 확장할 단어 선택과 선택된 단어 가중치 부여로 이루어진다. 원질의문이 입력되면 검색된 적합문서에서 원질의문을 단어와 밀접한 관계가 있는 단어를 선택하기 위하여 가중치를 부가한후, 원질의문에 추가하여 질의문을 확장한다. 이 논문에서는 원질의문 확장을 위한 단어 선택과 단어 가중치 부여를 위해 3가지 값을 사용한다. 첫째, TF는 적합문서 내의 단어 빈도의 총합이다. 둘째, idf는 해당 문서집단의 역문헌빈도이다. 셋째, r/R은 검색된 적합문서 중에서 해당단어가 있는 적합문서의 비율을 나타낸다. TF와 idf는 정보검색 시스템에서 일반적으로 사용되고있는 값이고 r/R은 이 논문에서 제안한 새로운 값이다.

Automatic Text Categorization using difference TTF and ITTF (TTF와 ITTF의 차를 이용한 자동 문서 분류)

  • 이상철;하진영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.133-135
    • /
    • 2001
  • 본 논문에서는 일반적으로 Word Based Matching 방법에서 많이 쓰이는 TFIDF 방법대신에 TTF(Total Term Frequency)와 ITTF(Inverse Total Term Frequecy) 에 가중치를 주어 문서분류의 정확도를 높이는 방법을 제안하고자 한다. TFIDF방법에서 IDF는 역문헌빈도를 나타내는데 Term에 대한 빈도비율의 공정성이 떨어져 문서 분류의 정확도에 한계가 있다. 본 논문에서 제시하는 문서 분류방법은 TTF와 ITTF에 각각의 가중치를 준 후에 차연산 이용하여 문서를 분류하는 것이다. 이러한 방법의 특징은 IDF를 사용할 때 보다 각 카테고리에 있는 term, 즉 단어의 중요도에 대한 가중치를 좀 더 공평하게 줌으로써 문서의 분류를 높일 수 있다. 본 논문에서는 조선일보의 카테고리를 사용하였으며 조선일보의 기사를 대상으로 문서 자동 분류 실험을 수행하였다. 실험 결과 TFIDF보다 본 논문에서 제안한 방법이 문서 분류에 높은 정확도를 나타냄을 보였다.

  • PDF

Implement of Relevance Feedback in "MIRINE" Information Retrieval System ("미리내" 정보검색 시스템에서 Relevance Feedback 구현)

  • Park, Su-Hyun;Park, Se-Jin;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.65-71
    • /
    • 1997
  • 이 논문은 부산대학교 전자계산학과 인공지능 연구실에서 개발한 정보검색 시스템 "미리내"의 적합성 피드백 방법을 분석하고, 그 방법들의 검색 효율을 비교 분석하였다. "미리내"에서 질의문은 자연언어 질의문을 사용하고 재검색을 위한 적합성 피드백은 원질의문에서 검색된 문서 중 이용자가 직접 선택한 적합 문서에서 추출한다. 적합성 피드백은 크게 단어 확장(Term Expansion)을 위한 단어 선택 방법과 추가될 단어에 가중치를 부여하는 단어 가중치 부여(Term Weighting)의 2가지 요소로 이루어진다. 단어 선택을 위해서는 적합 문서에 나타난 단어 빈도합(tf), 역문헌빈도(idf), 적합 문서 중에서 해당 단어가 있는 적합 문서의 비율(r/R) 등의 정보를 이용한다. 단어 가중치 부여 방법으로는 정규화 또는 코사인 함수를 이용하여 부여하였다. 단어확장에는 tfidf가 tfidf(r/R)보다 정확도 면에서 나은 향상율을 보였으나, 30위 내 검색된 적합문서의 수를 비교해 보았을 때 tfidf(r/R)의 정확도가 높았다. 단어 선택 방법에서 계산된 값을 정규화하여 가중치를 부여하였을 때 보다 코사인 함수를 이용하여 가중치를 부여하였을 때 정확도가 높았다. 실험은 KT-Set 2.0 (4391 건), 동아일보 96 년 신문기사(70459 건)를 대상으로 수행하였다.

  • PDF

Weighting Methods and their Evaluations for Compound Nouns in Korean Text Retrieval (한국어 정보검색에서의 복합명사 가중치 부여 방법 및 평가)

  • Kim, Ji-Young;Sung, Hyon-Myaeng
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.157-162
    • /
    • 2001
  • 한국어의 경우 띄어쓰기의 자유로움과 명사들이 비교적 자유롭게 결합하여 새로운 복합명사(compound noun)를 형성한다. 따라서, 정보검색에서 복합명사를 적절하게 처리하게 되면 검색 효율을 향상시킬 수 있다. 본 논문에서는 질의에 포함된 단일명사, 복합명사, 그리고 복합명사를 이루는 구성명사의 적절한 가중치 부여 방법에 대하여 기술한다. 일반적인 tf*idf가중치 방법은 문서 내 빈도수(tf)만을 강조하여 문서 내 발생빈도가 낮은 복합명사의 경우 낮은 가중치를 갖는다. 반대로, 역문헌 빈도수(idf)로 인해 복합명사가 단일명사보다 높은 가중치를 갖게 되면 단일명사의 가중치를 지나치게 떨어뜨려 검색 성능을 저하시킨다. 이런 문제를 해결하기 위해서 복합명사의 통계적인 특성을 고려하고, 복합명사를 이루는 구성명사의 적절한 가중치 사용과 tf*idf 변화 범위에 따른 파라메터를 이용하였다. 결과적으로 본 논문에서는 질의 색인어의 종류에 따라 가중치를 달리 부여함으로써 검색 성능을 향상시킬 수 있는 가중치 부여 방법을 제시하고 검증 실험을 통해 유효성을 제시했다는 점에서 그 의의가 있다고 하겠다.

  • PDF