Proceedings of the Korean Society for Information Management Conference
/
2003.08a
/
pp.253-261
/
2003
역문헌빈도 가중치는 문헌 집단에서 출현빈도가 낮을수록 색인어의 중요도가 높다는 가정에 근거하고 있다. 이 연구에서는 역문헌빈도 가중치의 가정에 의문을 제기하고, 이를 보완하는 새로운 문헌빈도 가중치 공식을 제안하였다. 제안한 가중치 공식은 저빈도어가 아닌 중간빈도어가 더 중요하다는 가정에 근거한 것으로서 역시 문헌빈도를 이용한 함수이다. 문헌빈도에 의한 가중치를 문헌의 색인어에 부여하는 경우와 질의어에 부여하는 경우로 나누어서 실험을 수행하고, 두 경우의 차이점을 논하였다.
Journal of the Korean Society for information Management
/
v.20
no.4
s.50
/
pp.233-248
/
2003
The Inverse Document Frequency (IDF) weighting method is based on the hypothesis that in the document collection the lower the frequency of a term is, the more important the term is as a subject word. This well-known hypothesis is, however, somewhat questionable because some low frequency terms turn out to be insufficient subject words. This study suggests the pivoted IDF weighting method for better retrieval effectiveness, on the assumption that medium frequency terms are more important than low frequency terms. We thoroughly evaluated this method on three test collections and it showed performance improvements especially at high ranks.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.895-897
/
2004
문서 검색 시스템에서 특정 주지에 관한 문서를 검색하기 위한 색인어의 가중치 부여 방법으로 단순빈도와 역문헌빈도에 의한 가중치 부여 방법을 주로 이용한다 하지만 빈도 정보만을 이용한 방법은 성능 및 정확도의 향상에 한계가 있다. 이에 본 논문에서는 특허 문헌 검색 시스템의 검색 효율을 높이기 위해 자주 출현하는 복합명사의 재출현 양상과 복합명사의 역할변화에 따른 가중치 부여 방법을 제안한다 본 연구에서 제안한 가중치 부여 방법을 이용하여 실험한 결과 단순빈도와 역문헌빈도 정보를 이용한 방법보다 더 나은 성능을 보였다 .
Journal of the Korean Society for information Management
/
v.17
no.1
/
pp.129-148
/
2000
Experiments were performed on three subsets of a Korean test collection in order to determine whether 2-Poisson model's Z value is a good measure for selecting subject words from a document to be indexed. It was found that subject word selection based on the Z value was effective for only one subset with short texts, i.e., the Science and Technology subset. Correlation analyses between 2-Poisson model's Z and TF.IDF weight for the three subsets showed that the correlation was relatively high for two test subsets with short texts, i.e., the Science and Technology subset and the Newspaper subset.
The study was applied to context window sizes and weighting method to obtain the best performance of word sense disambiguation using support vector machine. The context window sizes were used to a 3-word, sentence, 50-bytes, and document window around the targeted word. The weighting methods were used to Binary, Term Frequency(TF), TF ${\times}$ Inverse Document Frequency(IDF), and Log TF ${\times}$ IDF. As a result, the performance of 50-bytes in the context window size was best. The Binary weighting method showed the best performance.
Proceedings of the Korean Society for Information Management Conference
/
2001.08a
/
pp.137-142
/
2001
본 논문에서는 벡터모델과 신경망 모델을 이용하여 데이터 퓨전의 관점에서 다중증거로서 가중치, 문헌분리가, 엔트로피, 공기유사도를 적절히 결합하여 질의를 확장하는 방법을 제안한다. 실험결과 코사인 정규화 가중치 알고리즘, 문서길이 정규화 가중치 알고리즘과 결합하여 질의를 확장하는 것이 정규화시키지 않고 단순히 문헌빈도와 역문헌빈도의 조합을 이용한 가중치 알고리즘과 결합했을 때 보다 평균 정확률 향상이 더 높게 나타났다. 또한 다양한 공기기반 유사도를 이용하여 질의확장을 한 결과 벡터모델과 신경망 모델에서 코사인 공기유사도에 기반하여 질의확장한 경우가 다른 공기유사도에 비해 더 좋은 성능을 보였다.
정보검색 시스템의 검색 효율 향상을 위해서 다양한 적합성 피드백 방법이 개발되었다. 그러나 한국어 정보검색 시스템을 위한 적합성 피드백에 대한 연구는 거의 이루어지지 않은 실정이다. 이 논문에서는 기존에 개발된 적합성 피드백 방법을 한국어 정보 시스템에 적용하여 검색 효율을 비교하고, 새로운 적합성 피드백 방법을 개발 적용하여 기존의 방법들과 검색 효율을 비교분석하였다. 적합성 피드백은 원질의문을 확장할 단어 선택과 선택된 단어 가중치 부여로 이루어진다. 원질의문이 입력되면 검색된 적합문서에서 원질의문을 단어와 밀접한 관계가 있는 단어를 선택하기 위하여 가중치를 부가한후, 원질의문에 추가하여 질의문을 확장한다. 이 논문에서는 원질의문 확장을 위한 단어 선택과 단어 가중치 부여를 위해 3가지 값을 사용한다. 첫째, TF는 적합문서 내의 단어 빈도의 총합이다. 둘째, idf는 해당 문서집단의 역문헌빈도이다. 셋째, r/R은 검색된 적합문서 중에서 해당단어가 있는 적합문서의 비율을 나타낸다. TF와 idf는 정보검색 시스템에서 일반적으로 사용되고있는 값이고 r/R은 이 논문에서 제안한 새로운 값이다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.133-135
/
2001
본 논문에서는 일반적으로 Word Based Matching 방법에서 많이 쓰이는 TFIDF 방법대신에 TTF(Total Term Frequency)와 ITTF(Inverse Total Term Frequecy) 에 가중치를 주어 문서분류의 정확도를 높이는 방법을 제안하고자 한다. TFIDF방법에서 IDF는 역문헌빈도를 나타내는데 Term에 대한 빈도비율의 공정성이 떨어져 문서 분류의 정확도에 한계가 있다. 본 논문에서 제시하는 문서 분류방법은 TTF와 ITTF에 각각의 가중치를 준 후에 차연산 이용하여 문서를 분류하는 것이다. 이러한 방법의 특징은 IDF를 사용할 때 보다 각 카테고리에 있는 term, 즉 단어의 중요도에 대한 가중치를 좀 더 공평하게 줌으로써 문서의 분류를 높일 수 있다. 본 논문에서는 조선일보의 카테고리를 사용하였으며 조선일보의 기사를 대상으로 문서 자동 분류 실험을 수행하였다. 실험 결과 TFIDF보다 본 논문에서 제안한 방법이 문서 분류에 높은 정확도를 나타냄을 보였다.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.65-71
/
1997
이 논문은 부산대학교 전자계산학과 인공지능 연구실에서 개발한 정보검색 시스템 "미리내"의 적합성 피드백 방법을 분석하고, 그 방법들의 검색 효율을 비교 분석하였다. "미리내"에서 질의문은 자연언어 질의문을 사용하고 재검색을 위한 적합성 피드백은 원질의문에서 검색된 문서 중 이용자가 직접 선택한 적합 문서에서 추출한다. 적합성 피드백은 크게 단어 확장(Term Expansion)을 위한 단어 선택 방법과 추가될 단어에 가중치를 부여하는 단어 가중치 부여(Term Weighting)의 2가지 요소로 이루어진다. 단어 선택을 위해서는 적합 문서에 나타난 단어 빈도합(tf), 역문헌빈도(idf), 적합 문서 중에서 해당 단어가 있는 적합 문서의 비율(r/R) 등의 정보를 이용한다. 단어 가중치 부여 방법으로는 정규화 또는 코사인 함수를 이용하여 부여하였다. 단어확장에는 tfidf가 tfidf(r/R)보다 정확도 면에서 나은 향상율을 보였으나, 30위 내 검색된 적합문서의 수를 비교해 보았을 때 tfidf(r/R)의 정확도가 높았다. 단어 선택 방법에서 계산된 값을 정규화하여 가중치를 부여하였을 때 보다 코사인 함수를 이용하여 가중치를 부여하였을 때 정확도가 높았다. 실험은 KT-Set 2.0 (4391 건), 동아일보 96 년 신문기사(70459 건)를 대상으로 수행하였다.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.157-162
/
2001
한국어의 경우 띄어쓰기의 자유로움과 명사들이 비교적 자유롭게 결합하여 새로운 복합명사(compound noun)를 형성한다. 따라서, 정보검색에서 복합명사를 적절하게 처리하게 되면 검색 효율을 향상시킬 수 있다. 본 논문에서는 질의에 포함된 단일명사, 복합명사, 그리고 복합명사를 이루는 구성명사의 적절한 가중치 부여 방법에 대하여 기술한다. 일반적인 tf*idf가중치 방법은 문서 내 빈도수(tf)만을 강조하여 문서 내 발생빈도가 낮은 복합명사의 경우 낮은 가중치를 갖는다. 반대로, 역문헌 빈도수(idf)로 인해 복합명사가 단일명사보다 높은 가중치를 갖게 되면 단일명사의 가중치를 지나치게 떨어뜨려 검색 성능을 저하시킨다. 이런 문제를 해결하기 위해서 복합명사의 통계적인 특성을 고려하고, 복합명사를 이루는 구성명사의 적절한 가중치 사용과 tf*idf 변화 범위에 따른 파라메터를 이용하였다. 결과적으로 본 논문에서는 질의 색인어의 종류에 따라 가중치를 달리 부여함으로써 검색 성능을 향상시킬 수 있는 가중치 부여 방법을 제시하고 검증 실험을 통해 유효성을 제시했다는 점에서 그 의의가 있다고 하겠다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.