• Title/Summary/Keyword: 역감

Search Result 28, Processing Time 0.025 seconds

Force Display Processing using Multiple DC motors (다중 DC모터를 이용한 역감처리)

  • Kang Won-Chan;Kim Dong-Ok;Kim Won-Bae;Shin Suck-Doo;Kim Young-Dong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.183-188
    • /
    • 2001
  • In this paper, we have developed a new Force-Display system using tendon-driven method based multiple DC motors. The proposed system is based on the HIR Lab Haptic library, which calculates the real position and renders the reflecting force data to device rapidly. The system is composed of device based tendon- driving method, high-speed controller and Haptic rendering library. The developed system will be used on constructing the dynamical virtual environment. To show the efficiency of our system, we designed simulation program, which an display the moving force (attaching, grabbing, rotating) on two virtual points. As the result of the experiment, our proposed system shows much higher resolution than any others.

  • PDF

Trend Analysis of Affective Computing Technology for Diagnosis and Therapy of Autistic Spectrum Disorder (자폐스펙트럼장애 진단 및 치료를 위한 감성 컴퓨팅 기술 동향 분석)

  • Yoon, Hyun-Joong;Chung, Seong-Youb
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.429-440
    • /
    • 2010
  • It is known that as many as 1 in 91 children are diagnosed with an autistic spectrum disorder, and the incidence rate of the autistic spectrum disorder is much higher than that of cancer in Korea. It is necessary to develop a novel technology to sense their emotional status and give proper psychological diagnosis and therapy, since the children with autistic spectrum disorder usually do not express their own emotional status. This article presents the state-of-the-arts on the affective computing technologies that include recognition of emotional status through bio-sensing and virtual affective agent modeling, and then proposes a novel system architecture for diagnosis and therapy of autistic spectrum disorder. The diagnosis and therapy system of autistic spectrum disorder is composed of bio-sensing module, virtual environment module with affective agents, and haptic interface module. The architecture proposed in this paper will enhance the objectivity to diagnose autism spectrum disorders, and enable continuous treatment in daily life.

  • PDF

Development of K-$Touch^{TM}$ API for kinesthetic/tactile haptic interaction (역/촉감 햅틱 상호작용을 위한 "K-$Touch^{TM}$" API 개발 - 햅틱(Haptic) 개발자 및 응용분야를 위한 소프트웨어 인터페이스 -)

  • Lee, Beom-Chan;Kim, Jong-Phil;Ryu, Je-Ha
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • This paper presents a development of new haptic API (Application Programming Interface) that is called K-$Touch^{TM}$ haptic API. It is designed in order to allow users to interact with objects by kinesthetic and tactile modalities through haptic interfaces. The K-$Touch^{TM}$ API would serve two different types of users: high level programmers who need an easy to use haptic API for creating haptic applications and researchers in the haptic filed who need to experiment or develop with new devices and new algorithms while not wanting to re-write all the required code from scratch. Since the graphic hardware based kinesthetic rendering algorithm implemented in the K-$Touch^{TM}$ API is different from any other conventional kinesthetic algorithms, this API can provide users with haptic interaction for various data representations such as 2D, 2.5D depth(height field), 3D polygon, and volume data. In addition, this API supports kinesthetic and tactile interaction simultaneously in order to allow users with realistic haptic interaction. With a wide range of applicative characteristics, therefore, it is expected that the proposed K-$Touch^{TM}$ haptic API will assists to have deeper recognition of the environments, and enhance a sense of immersion in environments. Moreover, it will be useful development toolkit to investigate new devices and algorithms in the haptic research field.

  • PDF

Analysis and Design of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6 자유도 역감제시장치의 설계 및 해석)

  • Yoon, Jung-son;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1178-1186
    • /
    • 2001
  • This paper presents design and analysis of a 6 degree-of-freedom new haptic device using a par-allel mechanism for interfacing with virtual reality. The mechanism is composed of three pantograph mecha-misms that, driven by ground-fixed servomotors. stand perpendicularly to the base plate. Three spherical joints connect the top of the pantograph with connecting bars, and three revolute joint connect connecting bars with a mobile joystick handle. Forward and inverse kinematic analyses have been performed and the Jacobian matrix is derived by using the screw theroy. Performance indices such as GPI(Global Payload Index), GCI(Global Conditioning index), Traslation and Orientation workspaces, and Sensitivity are evaluated to find optimal pa-rameters in the design stage. The proposed haptic mechanism has better load capability than those of the ex-isting haptic mechanisms due to the fact that motors are fixed at the base. It has also wider orientation work-space mainly due to RRR type spherical joints.

  • PDF

EMS based Force Feedback Methodology through Major Muscle Group Activation (대표근육 자극을 통한 EMS 기반 역감 제어방법론 제안)

  • Kim, Hyo-Min;Kwon, Jae-Sung;Oh, Yong-Hwan;Yang, Woo-Sung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.270-278
    • /
    • 2017
  • The electrical muscle stimulator (EMS) based human machine interface (HMI) free to mechanical constraint and muscle fatigue problems are proposed for force feedback in a virtual reality. The device was designed to provide force feedback up to 4.8 N and 2.6 N each to the thumb and forefingers. The main objective of the HMI is to make unnecessary mechanical structures to attach on the hand or fingers. It employs custom EMSs and an interface arranged in the forearm. In this work, major muscle groups such as extensor pollicis brevis (EPB), extensor indicis proprius (EIP), flexor pollicis longus (FPL) and flexor digitorum profundus (FDP) are selected for efficient force feedback and controlled individually. For this, a human muscular-skeletal analysis was performed and verified. The validity of the proposed multi-channel EMS based HMI was evaluated thorough various experiments with ten human subjects, interacting with a virtual environment.

Design of the Electric Stimulus Tactile Apparatus Loaded on the Haptic Interface Using Ultrasonic Motors (초음파 모터 구동 역감 장치에 부착한 전기자극 촉감 장치의 설계)

  • Kim Dong-Ok;Kang Won-Chan;Kim Sung-Cheol;Oh Geum-Kon;Kim Young-Dong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.9-13
    • /
    • 2001
  • This paper proposes the electric stimulus tactile apparatus system(TESTAS) loaded on the hap-tic interface using ultrasonic motors(USMs). To touch the virtual object like wall in graphic, the 6 DOF haptic interface provides force feedback to users as if it is real. But the case of sharp virtual object like a puncture, it could not provided the sense of pain, but only the reaction-force. After the TESTAS had been loaded on this haptic interface. it could Provide not only the force but also the pain to users. To estimate the capability of TESTAS, we did experiments of three cases, one was very sharp, another was dull, the other is continuative contact.

  • PDF

Adaptive Mass-Spring Method for the Synchronization of Dual Deformable Model (듀얼 가변형 모델 동기화를 위한 적응성 질량-스프링 기법)

  • Cho, Jae-Hwan;Park, Jin-Ah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Traditional computer simulation uses only traditional input and output devices. With the recent emergence of haptic techniques, which can give users kinetic and tactile feedback, the field of computer simulation is diversifying. In particular, as the virtual-reality-based surgical simulation has been recognized as an effective training tool in medical education, the practical virtual simulation of surgery becomes a stimulating new research area. The surgical simulation framework should represent the realistic properties of human organ for the high immersion of a user interaction with a virtual object. The framework should make proper both haptic and visual feedback for high immersed virtual environment. However, one model may not be suitable to simulate both haptic and visual feedback because the perceptive channels of two feedbacks are different from each other and the system requirements are also different. Therefore, we separated two models to simulate haptic and visual feedback independently but at the same time. We propose an adaptive mass-spring method as a multi-modal simulation technique to synchronize those two separated models and present a framework for a dual model of simulation that can realistically simulate the behavior of the soft, pliable human body, along with haptic feedback from the user's interaction.

  • PDF

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.