• Title/Summary/Keyword: 여행 일정 추천 시스템

Search Result 6, Processing Time 0.021 seconds

Development of Trip Scheduling Program Consideny User Constraints (사용자 제약조건을 고려한 여행추천 프로그램의 개발)

  • Cho, Dae-Soo;Cho, Sin-Young;Im, Suk-Young;Kim, Seong-Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.279-281
    • /
    • 2013
  • 본 논문은 일정을 고려한 추천여행 프로그램으로써 휴가철 외에도 짧은 휴일 간 사용자의 일정을 고려한 효율적인 여행을 추천해 준다. 이 프로그램은 고성능 컴퓨팅 시스템의 성능을 통해 효율적인 여행루트를 추천한다. 본 연구는 출발지에서 도착지간의 이동시간을 최소화한다. 또한 이 연구는 출발지와 도착지를 입력 하였을 때, 프로그램 내에서 그 거리상에 위치한 추천여행지를 알려준다. 이때 작업을 할당 받은 프로그램은 또 다른 GPS시스템과 일정 프로그램으로 작업을 이주시켜 여행 루트와 일정 작업을 균등하게 유지함으로써 작업의 대기시간을 줄이고, 각 작업의 수행시간을 단축한다. 본 논문에서는 시뮬레이션을 통하여 제안하는 일정을 고려한 추천여행 프로그램이 기존의 스스로 계획하여 떠나는 여행의 우수함을 보인다.

  • PDF

Personalized Itinerary Recommendation System based on Stay Time (체류시간을 고려한 여행 일정 추천 시스템)

  • Park, Sehwa;Park, Seog
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • Recent developments regarding transportation technology have positioned travel as a major leisure activity; however, trip-itinerary planning remains a challenging task for tourists due to the need to select Points of Interest (POI) for visits to unfamiliar cities. Meanwhile, due to the GPS functions on mobile devices such as smartphones and tablet PCs, it is now possible to collect a user's position in real time. Based on these circumstances, our research on an automatic itinerary-planning system to simplify the trip-planning process was conducted briskly. The existing studies that include research on itinerary schedules focus on an identification of the shortest path in consideration of cost and time constraints, or a recommendation of the most-popular travel route in the destination area; therefore, we propose a personalized itinerary-recommendation system for which the stay-time preference of the individual user is considered as part of the personalized service.

NLP-based Travel Review Classification and Recommendation System Design (NLP 기반 여행 리뷰 분류 및 추천 시스템 설계)

  • Hong Youngmin;Young Deok Park
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.636-638
    • /
    • 2023
  • Covid19의 세계적 유행 이래로 긴 일정의 해외여행이 감소하고 국내 여행의 수요가 꾸준히 증가하는 추세이다. 현재 다수의 국내 여행 숙박 플랫폼은 가성비 측면으로 이용자가 숙박업소를 선택하고 소비자와 업체를 연결해주는 과정에서 수수료를 얻는 상업적 모델이다. 본 논문에서는 가격 경쟁 중심의 기성 시스템이 아닌, 여행자 개인의 가치를 맞춤화하고 공익의 목적으로 업체를 홍보하는 시스템을 제안한다. 이 시스템은 웹 기반의 시스템을 구현하여 여행자에게 개인 가치에 맞는 업소를 맞춤형으로 추천하고 해당 업소에 대한 평가 지표를 시각화하여 제공한다. 본 시스템은 맞춤형 업소 추천과 평가 지표 제공을 위해 소비자의 리뷰 데이터를 사용한다. 텍스트 데이터를 분석하고 해당 데이터를 다중 분류를 통해 업소에 대한 평가 지표별 점수를 산정한다. 본 시스템은 여행자에게 다양한 관광지와 관광 업소를 추천함으로써 지역 관광을 유도하고 해당 여행지 업소와 지역 경제에 도움을 줄 것이라고 기대된다. 본 논문에서 제안된 기법은 오픈소스로 공개되었다[1].

Multi-day Trip Planning System with Collaborative Recommendation (협업적 추천 기반의 여행 계획 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Ga, Myeong-Hyeon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.159-185
    • /
    • 2016
  • Planning a multi-day trip is a complex, yet time-consuming task. It usually starts with selecting a list of points of interest (POIs) worth visiting and then arranging them into an itinerary, taking into consideration various constraints and preferences. When choosing POIs to visit, one might ask friends to suggest them, search for information on the Web, or seek advice from travel agents; however, those options have their limitations. First, the knowledge of friends is limited to the places they have visited. Second, the tourism information on the internet may be vast, but at the same time, might cause one to invest a lot of time reading and filtering the information. Lastly, travel agents might be biased towards providers of certain travel products when suggesting itineraries. In recent years, many researchers have tried to deal with the huge amount of tourism information available on the internet. They explored the wisdom of the crowd through overwhelming images shared by people on social media sites. Furthermore, trip planning problems are usually formulated as 'Tourist Trip Design Problems', and are solved using various search algorithms with heuristics. Various recommendation systems with various techniques have been set up to cope with the overwhelming tourism information available on the internet. Prediction models of recommendation systems are typically built using a large dataset. However, sometimes such a dataset is not always available. For other models, especially those that require input from people, human computation has emerged as a powerful and inexpensive approach. This study proposes CYTRIP (Crowdsource Your TRIP), a multi-day trip itinerary planning system that draws on the collective intelligence of contributors in recommending POIs. In order to enable the crowd to collaboratively recommend POIs to users, CYTRIP provides a shared workspace. In the shared workspace, the crowd can recommend as many POIs to as many requesters as they can, and they can also vote on the POIs recommended by other people when they find them interesting. In CYTRIP, anyone can make a contribution by recommending POIs to requesters based on requesters' specified preferences. CYTRIP takes input on the recommended POIs to build a multi-day trip itinerary taking into account the user's preferences, the various time constraints, and the locations. The input then becomes a multi-day trip planning problem that is formulated in Planning Domain Definition Language 3 (PDDL3). A sequence of actions formulated in a domain file is used to achieve the goals in the planning problem, which are the recommended POIs to be visited. The multi-day trip planning problem is a highly constrained problem. Sometimes, it is not feasible to visit all the recommended POIs with the limited resources available, such as the time the user can spend. In order to cope with an unachievable goal that can result in no solution for the other goals, CYTRIP selects a set of feasible POIs prior to the planning process. The planning problem is created for the selected POIs and fed into the planner. The solution returned by the planner is then parsed into a multi-day trip itinerary and displayed to the user on a map. The proposed system is implemented as a web-based application built using PHP on a CodeIgniter Web Framework. In order to evaluate the proposed system, an online experiment was conducted. From the online experiment, results show that with the help of the contributors, CYTRIP can plan and generate a multi-day trip itinerary that is tailored to the users' preferences and bound by their constraints, such as location or time constraints. The contributors also find that CYTRIP is a useful tool for collecting POIs from the crowd and planning a multi-day trip.

Travel Planning Recommendation System based on the Semantic Web Services (시맨틱 웹 서비스 기반 여행 계획 추천 시스템)

  • Kim, Sung-Suk;Kim, Pan-Koo
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.461-464
    • /
    • 2005
  • 현재의 웹은 사용자가 목적에 맞게 정보를 클릭하면서 정보를 찾아내는 게 일반적이다. 하지만 시맨틱 웹 서비스는 임무를 부여받은 자동화된 프로그램이 사람을 대신해 웹상의 정보를 추출하고 이를 가공해 새로운 정보를 만들어낼 수 있다. 이렇듯 사람을 대신 자동적으로 처리해주는 프로그램을 에이전트(Agent)라고 한다. 시맨틱 웹 서비스 이용하여 여행(Travel) 에이전트에게 대략적으로 휴가일정과 개인적인 선호도만 알려주면 여행에 필요한 모든 예약을 손쉽게 할 수 있다. 따라서 본 논문에서는 현존하는 여행 계획 추천 시스템과는 달리 시멘틱 웹 서비스 기술을 이용하여 보다 더 효율적이며 개인화된 여행 계획 추천 시스템을 제안한다.

  • PDF

Implementation of a Travel Route Recommendation System Utilizing Daily Scheduling Templates

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.137-146
    • /
    • 2022
  • In relation to the travel itinerary recommendation service, which has recently become in high demand, our previous work introduces a method to quantify the popularity of places including tour spots, restaurants, and accommodations through social big data analysis, and to create a travel schedule based on the analysis results. On the other hand, the generated schedule was mainly composed of travel routes that connected tour spots with the shorted distance, and detailed schedule information including restaurants and accommodation information for each travel date was not provided. This paper presents an algorithm for constructing a detailed travel route using a scenario template in a travel schedule created based on social big data, and introduces a prototype system that implements it. The proposed system consists of modules such as place information collection, place-specific popularity score estimation, shortest travel rout generation, daily schedule organization, and UI visualization. Experiments conducted based on social reviews collected from 63,000 places in the Gyeongnam province proved effectiveness of the proposed system.