• Title/Summary/Keyword: 엘보우고나

Search Result 2, Processing Time 0.014 seconds

Failure Analysis of Austenitic Stainless Steel Pipe (오스테나이트계 스테인레스 강관에서의 손상해석에 관한 연구)

  • 이상율;이종오;이주석;조경식;조종춘;이보영
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.21-32
    • /
    • 1993
  • A cracking failure of a austenitic stainless steel elbow in a naphtha cracking line in a petrochenmical plant occurred, resulting in leakage of organic compound flowing inside the elbow. Due to the failure, emergency shutdown of the plant was enforced to repair the troubled part of the line. The repair cost as well as production loss during the unscheduled plant shutdown has cost the company a great amount of financial loss. In this studies, a failure analysis of the cracked elbow was performed using NDT, chemical analysis, microstructural analysis including optical microscopy as well as scanning electron microscopy with EPMA, mechanical testings such as tensile testing, hardness testing and Charphy impact test fractography. The results indicated that several problems such as a welding defect and presence of a detrimental phase which was found to be relate to improper postforming heat treatment process was identified and the failure was concluded to be due to a low temperature embrittlement of the defect-containing elbows.

  • PDF

Effects of Curved Pipe Geometry and Inside Fluid Flow on the Vibrational Characteristics of Pipe Systems (배관의 형상 및 내부유체 유동이 배관계의 진동특성에 미치는 영향)

  • Choi, Myung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.58-64
    • /
    • 2016
  • Vibrational characteristics of curved pipe structures are investigated with respect to the change of inside flow velocities. Based upon the Hamilton's principle, the equations of motions are derived, and the finite element equation is constructed to solve the frequency equation for curved pipe structures. When the initial tension is neglected in cured pipes, the natural frequencies are reduced as flow velocity increases, and the rapid decreases of the natural frequencies take place. However, when the initial tension is taken into account, the natural frequencies are not changed with the change of the flow velocity. In free vibrational simulation of pipe systems, it is necessary to calculate the initial force due to the velocity and the pressure of the fluid flow from the equilibrium. The force should be included in the equation of motion of the systems to get more accurate natural frequencies. The mechanical properties like stiffness or the location of pipe support need to be changed to avoid resonance. The natural frequencies are to be isolated from the frequency range of dominant vibration modes. The angles of elbows do not affect the change of the fundamental natural frequency, but affect the change of the third or higher natural frequencies.