• Title/Summary/Keyword: 엔탈피

Search Result 515, Processing Time 0.019 seconds

Production and characterization of rice starch from stale rice using improved enzymatic digestion method (개선된 효소소화법에 의한 고미로부터 쌀전분의 생산 및 특성)

  • Kim, Reejae;Lim, SongI;Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.749-755
    • /
    • 2021
  • The objective of this study was to investigate the physicochemical properties of rice starch extracted from stale rice using alkaline steeping (AKL) and improved enzymatic digestion (iENZ) methods. The crude protein content (0.5-0.7%) of stale rice starch (SRS) was less than 1% by iENZ, but not so when measured by the existing ENZ methods. SRS is an intermediate amylose rice starch. AKL-SRS and iENZ-SRS exhibited typical A-type crystal packing arrangements with similar relative crystallinities. iENZ-SRS showed higher gelatinization onset and peak temperatures with a narrower gelatinization temperature range, compared to those of AKL-SRS, indicating that iENZ annealed SRS. Thus, iENZ-SRS exhibited lower swelling power and solubility, and higher pasting viscosities with delayed viscosity development. Overall, the use of stale rice as a rice starch source could make economical production of rice starch possible, and iENZ may diversify rice starch characteristics, which expands the utilization of rice starch in food and non-food industries.

Isolation and Physicochemical Properties of Rice Starch from Rice Flour using Protease (단백질분해효소에 의한 쌀가루로부터 쌀전분의 분리 및 물리화학적 특성)

  • Kim, ReeJae;Oh, Jiwon;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.193-199
    • /
    • 2019
  • This study aimed to investigate the impact of protease treatments on the yield of rice starch (RST) from frozen rice flours, and to compare the physicochemical properties of RST by alkaline steeping (control) and enzymatic isolation (E-RST) methods. Although the yield of E-RST, prepared according to conditions designed by the modified 23 complete factorial design, was lower than the control, the opposite trends were observed in its purity. E-RST (RST1, isolated for 8 h at 15℃ with 0.5% protease; RST2, isolated for 24 h at 15℃ with 1.5% protease; RST3, isolated for 24 h at 15℃ with 0.5% protease) with the yields above 50% were selected. Amylose contents did not significantly differ for the control and RST2. Relative to the control, solubilities were higher for all E-RST, but swelling power did not significantly differ for E-RST except for RST1. Although all E-RST revealed higher gelatinization temperatures than the control, the reversed trends were found in the gelatinization enthalpy. The pasting viscosities of all E-RST were lower than those of the control. Consequently, the enzymatic isolation method using protease would be a more time-saving and eco-friendly way of preparing RST than the alkaline steeping method, even though its characteristics are different.

Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine (6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석)

  • Lee, Sunyoup;Lee, Seok-Hwan;Kim, Chang-Gi;Lee, Jeong-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2020
  • Reactivity controlled compression ignition (RCCI) combustion is one of dual-fuel combustion systems which can be constructed by early diesel injection during the compression stroke to improve premixing between diesel and air. As a result, RCCI combustion promises low nitrogen oxides (NOx) and smoke emissions comparing to those of general dual-fuel combustion. For this combustion system, to meet the intensified emission regulations without emission after-treatment systems, exhaust gas recirculation (EGR) is necessary to reduce combustion temperature with lean premixed mixture condition. However, since EGR is supplied from the front of turbocharger system, intake pressure and the amount of fresh air supplementation are decreased as increasing EGR rate. For this reason, the effect of various EGR rates on the brake power and thermal efficiency of natural gas/diesel RCCI combustion under two different operating conditions in a 6 L compression ignition engine. Varying EGR rate would influence on the combustion characteristic and boosting condition simultaneously. For the 1,200/29 kW and 1,800 rpm/(lower than) 90 kW conditions, NOx and smoke emissions were controlled lower than the emission regulation of 'Tier-4 final' and the maximum in-cylinder pressure was 160 bar for the indurance of engine system. The results showed that under 1,200 rpm/29 kW condition, there were no changes in brake power and thermal efficiency. On the other hand, under 1,800 rpm condition, brake power and thermal efficieny were decreased from 90 to 65 kW and from 37 to 33 % respectively, because of deceasing intake pressure (from 2.3 to 1.8 bar). Therefore, it is better to supply EGR from the rear of compressor, i.e. low pressure EGR (LP-EGR) system, comparing to high pressure EGR (HP-EGR) for the improvement of RCCI power and thermal efficiency.

Water-absorption characteristics and cooked rice texture of milled rice (쌀 수침 중 벼 품종별 수분흡수 특성 및 취반미 물성)

  • Choi, Induck;Oh, You-Geun;Kwak, Jieun;Chun, Areum;Kim, Mi-Jung;Hyun, WoongJo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.486-494
    • /
    • 2021
  • A rice (Oryza sativa L.) cultivar of the SPP (stakeholder participatory program) and ordinary rice were characterized based on water-absorption properties and cooked rice texture. During rice soaking, the rice grain transformed from transparent to opaque (white), indicating that water molecules diffused into the rice grain during soaking. In addition, cracks in the internal structure of soaked rice gradually increased with an increase in soaking time. Water absorption increased rapidly up to 20 min, but no increment was observed after 30 min of soaking. At this point, the entire areas of the soaked rice grain turned white, indicating that water absorption had reached saturation. SPP rice showed lower hardness and higher stickiness in its cooked form than ordinary rice, suggesting that SPP rice could be a more preferable choice than ordinary rice. Furthermore, cooked SPP rice was more edible in terms of hardness and stickiness after being kept warm for 12 h than ordinary rice. These results indicated that cooked SPP rice exhibited slow retrogradation and improved taste.

Dietary fiber content and physicochemical properties of starch isolated from potato cultivars (감자 품종에 따른 식이섬유 및 전분의 이화학적 특성)

  • Kim, Hyun-Joo;Choi, Jang Gyu;Lee, Byong Won;Han, Narae;Lee, Jin Young;Lee, Yu-Young;Kim, Mihyang;Kang, Moon Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.377-385
    • /
    • 2022
  • This study examined the dietary fiber content of potato and physicochemical characteristics of potato starch isolated from various cultivars. The total dietary fiber content of the Arirang1ho cultivar was 6.30%, which was higher than that of other cultivars. The amylose content ranged from 36.76-55.75%, with Sooseon having the highest amylose content. Analysis of the degree of amylopectin polymerization revealed that all cultivars had a high proportion of DP (degree of polymerization) 13-24. The phosphate content ranged from 45.90-84.23 mg/100 g, with Arirang1ho having the highest and Eunseon having the lowest phosphate content. The resistant starch content ranged from 58.94-79.87%. Geumseon showed the highest breakdown in the range of 587.45-1,129.72 RVU (rapid viscosity unit). Sooseon had the lowest gelatinization enthalpy value for potato starch in the range of 5.54-7.64 J/g. These results provide basic data for the use of potatoes in industrial applications.