• Title/Summary/Keyword: 엔진 회전

Search Result 369, Processing Time 0.024 seconds

Starting and Normal Operation Control Logic Research of Small Gas Turbine Engine (소형 가스터빈엔진의 시동 및 정상운용구간 제어로직 연구)

  • Lee, Kyungjae;Rhee, Dong-Ho;Kang, Young Seok;Kho, Seonghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • As part of the commercialization research of small gas turbine engines, starting and normal operation control logic research of small gas turbine engine was conducted. It was investigated how the igniter, starting motor and fuel pump/valve are controlled during the ignition and normal operation process and it was applied to the prototype engine control unit(ECU) of the small gas turbine engine for commercialization research. Based on the ground test results, an ECU for flight test is being developed, and after completion of the development, an altitude test will be performed through an altitude test facility of Korea Aerospace Research Institute.

Study on Performance of an Fuel Pressure Regulator under Failure Condition in an Electric Control Diesel Engine (전자제어 디젤엔진의 연료압력 레귤레이터 고장에 따른 진단 및 성능 연구)

  • Kim, Tae-Jung;Cho, Hong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1677-1683
    • /
    • 2015
  • To cope with exhaust gas regulation, Diesel engine applied to electronic control system. As it accurately regulated the injected fuel mass and the fuel efficiency and the output are increased but the noise and the vibration are decreased. In order to keep the performance of Electronic Diesel Control System, it is important to accurately control the fuel pressure. However, when the regulator of fuel pressure is not controlled properly, the failure phenomenons(starting failure, staring delay, accelerated failure, engine mismatch et al.) occur because the fuel pressure is not stabilize. In this study, effects on a fuel pressure, engine rotating speed according to the control rate of fuel-pressure regulator are investigated in order to analyzed the performance variation with failure of fuel-pressure regulator. As a result, when the control rate of a fuel-pressure regulator is 4%~6% lower than that of standard condition, the variation of engine's rpm and return fuel flow is increased, and the abnormal condition was occurred. Besides, it is possible to diagnose the failures on fuel-pressure regulator under these conditions.

Study on the Humidity Effect on Gas turbine Engine Performances (습도가 엔진성능에 미치는 영향에 대한 실험적 고찰)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok;Kim, Chun-Taek
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-104
    • /
    • 2010
  • The moisture in the atmosphere exerts a lot of influence upon Gas turbine engine performances. There is a noticeable influence of wet air at the summer sea level, high flight mach number and low engine rpm increasingly. An altitude Engine Test Facility is used to accomplish the engine performance tests at dry air condition and wet air condition, through which engine performance results is revealed. Also, Gas turbine Simulation Program is used to predict the variation of engine performance due to inlet humidity. In the result, net thrust and specific fuel consumption measured -2.826% and 1.325%, respectively at wet air condition compared to dry air condition.

The introduction of Engine Performance Test for Miniature Turbojet Engine considering humidity effects (습도 영향을 고려한 초소형 터보제트 엔진 성능시험 소개)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok;Kim, Yu-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.335-338
    • /
    • 2010
  • The moisture in the atmosphere exerts a lot of influence upon Gas turbine engine performances. There is a noticeable influence of wet air at the summer sea level, high flight mach number and low engine rpm increasingly. An altitude Engine Test Facility is used to accomplish the engine performance tests at dry air condition and wet air condition, through which engine performance results is revealed. In the result, net thrust and specific fuel consumption measured -2.826% and 1.325%, respectively at wet air condition compared to dry air condition.

  • PDF

Development of Rotation Invariant Real-Time Multiple Face-Detection Engine (회전변화에 무관한 실시간 다중 얼굴 검출 엔진 개발)

  • Han, Dong-Il;Choi, Jong-Ho;Yoo, Seong-Joon;Oh, Se-Chang;Cho, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.116-128
    • /
    • 2011
  • In this paper, we propose the structure of a high-performance face-detection engine that responds well to facial rotating changes using rotation transformation which minimize the required memory usage compared to the previous face-detection engine. The validity of the proposed structure has been verified through the implementation of FPGA. For high performance face detection, the MCT (Modified Census Transform) method, which is robust against lighting change, was used. The Adaboost learning algorithm was used for creating optimized learning data. And the rotation transformation method was added to maintain effectiveness against face rotating changes. The proposed hardware structure was composed of Color Space Converter, Noise Filter, Memory Controller Interface, Image Rotator, Image Scaler, MCT(Modified Census Transform), Candidate Detector / Confidence Mapper, Position Resizer, Data Grouper, Overlay Processor / Color Overlay Processor. The face detection engine was tested using a Virtex5 LX330 FPGA board, a QVGA grade CMOS camera, and an LCD Display. It was verified that the engine demonstrated excellent performance in diverse real life environments and in a face detection standard database. As a result, a high performance real time face detection engine that can conduct real time processing at speeds of at least 60 frames per second, which is effective against lighting changes and face rotating changes and can detect 32 faces in diverse sizes simultaneously, was developed.

Development of the Crankshaft Deflection Measuring Device by wireless Communication For the Marine Diesel Engine(II) (선박 엔진용 무선 크랭크 샤프트 디플렉션 측정장치 개발(II))

  • Kim, Jang-Kyu;Lee, Seung-Hwan;Jeong, Dong-Chai
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.83-84
    • /
    • 2006
  • 크랭크 샤프트 디플렉션 측정은 선박엔진의 조립공정에 있어, 크랭크 샤프트를 조립 시 1회전의 상태에서 크랭크 스루 간의 디플렉션 상대값의 변화를 확인하는 것이다. 이를 통하여 크랭크 샤프트가 정상 조립되었는지 확인할 수 있다. 기 개발 완료한 구형 무선 크랭크 샤프트 디플렉션 측정장치(상품명 : Measutal)는 측정장치의 길이로 인해 선박용 엔진 중 저속 엔진에만 적용 가능하였다. 하지만 중속엔진의 경우 공간이 협소하여 크랭크 샤프트 디플렉션 측정이 어려우며, 이는 폭정 오차를 수반하게 된다. 본 논문은 상기 문제를 해결하기 위해 중속에도 적용 가능한 신 모델의 개발에 관한 것이다. 또한 개발된 신 모델은 소비자의 요구를 만족하기 위해 구 모델에 비하여 밧데리 지속시간 향상되었고 무선 통신 거리가 확대되었다.

  • PDF

Effects of Axial Flow Compressor Surge on the Performance of Turbofan Engine (터보팬 엔진의 축류압축기 서지가 엔진성능에 미치는 영향)

  • Oh, Chang-Yong;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • This thesis has analyzed the effect of the surge happening in flight on the engine performance, especially on the PW4000 turbofan engine. It is to be judged that the flight surge can occur more often at the time of takeoff than it does en route due to the fact that the engine parameters are prone to fluctuate. EPR is judged to be the most highly sensitive parameter responding when surge occurs. Both Engine rpm and Wf decrease almost simultaneously just like an EPR. During the take-off rolling, N1 vibration is more sensitive than the N2 vibration. Consequently, the surge can be detected by EGT increase, while the other parameters (EPR, rpm, Wf, etc) decrease.

Development of Transient Simulation Program for Smart UAV Propulsion System (스마트 무인기 추진기관의 천이 모사 프로그램 개발)

  • Lee, Chang-Ho;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • The Smart UAV must have the control characteristics of propulsion system necessary for both rotary aircraft and fixed wing aircraft though it equips turbo-shaft engine. To develop an electronic engine controller in the future, it is necessary to accumulate the experience of engine operation and data of tilt rotor aircraft. For this purpose, the computer programs which predict engine performance in the steady state and transient state can be utilized for the supplementation of flight test data. In this work, we developed a dynamic analysis program using engine performance data gathered during the flight tests. In addition the accuracy of the program was verified through comparison with flight test data and the results of steady-state performance analysis program.

(A study on the fuel economy in the vehicle using variable cylinder system) (가변실린더시스템을 이용한 차량의 연비향상에 관한 연구)

  • 이태표;김종부;박준훈
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.71-76
    • /
    • 2002
  • Because the driving time is increased under the low speed by rapidly increasing of vehicles, this paper is presented a new ignition control system for improvement the fuel economy, which only some of cylinders are using under the idle status or low speed and preserving the engine rpm. is applicable to effective in fuel economy. An actual hardware was made to prove this new control system. The developed variable cylinder engine concentrated the heat neat the cylinders in idle status or low speed, so there was a problem in re-ignition. It was the reason of a lot of exhaust gas, high fuel consumption and instability of engine revolution. In this paper, in order to solve above problem to show the improvement fuel economy using the new ignition control system and valve opening period at idle status of low speed.

Higher Order Axismmetric Boundary Element Analysis of Turbine Rotor Disk of the Small Turbojet Engine (고차 축대칭 경계 요소에 의한 소형 터보젯 엔진의 터빈 로우터 디스크 해석)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.128-144
    • /
    • 1998
  • The BEM for linear elastic stress analysis is applied to the highly rotating axisymmetric body problem which also involves the thermoelastic effects due to steady-state thermal conduction. The axisymmetric BEM formulation is briefly summarized and an alternative approach for transforming the volume integrals associated with such body force kernels into equivalent boundary integrals is described in a way of using the concept of inner product and vector identity. A discretization scheme for higher order BE is outlined for numerical treatment of the resulting boundary integral equations, and it is consequently illustrated by determining the stress distributions of the turbine rotor disk of the small turbojet engine(ADD 500) for which a FEM stress solution has been furnished by author.

  • PDF