• Title/Summary/Keyword: 엔진 동기화

Search Result 42, Processing Time 0.02 seconds

A Study on The Metaverse Content Production Pipeline using ZEPETO World (제페토 월드를 활용한 메타버스 콘텐츠 제작 공정에 관한 연구)

  • Park, MyeongSeok;Cho, Yunsik;Cho, Dasom;Na, Giri;Lee, Jamin;Cho, Sae-Hong;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • This study proposes the metaverse content production pipeline using ZEPETO World, one of the representative metaverse platforms in Korea. Based on the Unity 3D engine, the ZEPETO world is configured using the ZEPETO template, and the core functions of the metaverse content that enable multi-user participation such as logic, interaction, and property control are implemented through the ZEPETO script. This study utilizes the basic functions such as properties, events, and components of the ZEPETO script as well as the ZEPETO player which includes avatar loading, character movement, and camera control functions. In addition, based on ZEPETO's properties such as World Multiplayer and Client Starter, it summarizes the core synchronization process required for multiplay metaverse content production, such as object transformation, dynamic object creation, property addition, and real-time property control. Based on this, we check the proposed production pipeline by directly producing multiplay metaverse content using ZEPETO World.

Preliminary Design and Implementation of 3D Sound Play Interface for Graphic Contents Developer (그래픽 콘텐츠 개발자를 위한 입체음 재생 인터페이스 기본 설계 및 구현)

  • Won, Yong-Tae;Jang, Bong-Seog;Ahn, Dong-Soon;Kwak, Hoon-Sung
    • Journal of Digital Contents Society
    • /
    • v.9 no.2
    • /
    • pp.203-211
    • /
    • 2008
  • Due to the advance of H/W and S/W techniques to play 3D sound, the virtual space contented by 3D graphics and sounds can provide users more improved realities and vividness. However for the small 3D contents developers and companies, it is hard to implement 3D sound techniques because the implementation requires expensive sound engines, 3D sound technical understanding and 3D sound programming skills. Therefore 3D-sound-playing-interface is necessary to easy and cost-effective 3D sound implementation. Using this interface, graphics experts can easily add 3D sound techniques to their applications. In this paper, the followings are designed and implemented as a preliminary stage in the way of developing the 3D sound playing interface. First, we develop 3D sound S/W modules converting mono to 3D sound in PC based systems. Second, we develop the interconnection modules to map 3D graphic objects and sound sources. The developed modules in this paper can allow the user to percept sound source position and surround effect at the moving positions in the virtual world. In the coming works, we are going to develop the more completed 3D sound playing interface consisted of the synchronization technique for sound and moving objects, and HRTF.

  • PDF