• Title/Summary/Keyword: 엔진 경사 시험 장치

Search Result 4, Processing Time 0.019 seconds

Safety Estimation of Engine Lubrication System using Tilting Test Rig (Tilting Test Rig를 이용한 엔진 윤활 시스템 안정성 평가)

  • 윤정의;전문수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • Engine lubrication system is generally affected by vehicle driving conditions, which are composed of acceleration, braking deceleration and accelerating during cornering. The major reason is due to the oil pan system in which oil is directly influenced by inertia farce caused by vehicle driving conditions. Therefore, to confirm safety of engine lubrication system inertia farce effects are also considered in the developing state. For the purpose, we have carried the engine tilting tests using ourselves made test rig. Verifying the test results we also measured the inertia effects on the engine lubrication system using the circular tuning and slalom test with vehicle. Through the comparison study between two kinds of results we obtained that the engine tilting test rig was very useful to confirm the safety evaluation of engine lubrication system.

A Study on Combined Effects between Swirl and Tumble Flow of Intake Port System in Cylinder Head (엔진 흡입포트 시스템 유동특성 규명을 위한 스월-텀블 합성효과에 관한 연구)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.76-82
    • /
    • 1999
  • The object of this study is to find new evalution index for in-cylinder flow characteristics insteady of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angular flow characteristics.

  • PDF

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.