• Title/Summary/Keyword: 엔진밸브

Search Result 334, Processing Time 0.028 seconds

Development of BLDC Motor Driven Cryogenic Thrust Control Valve for Liquid Propellant Rocket Engine (BLDC 모터로 구동되는 액체 추진제 로켓엔진용 극저온 추력제어밸브 개발)

  • Jung, Tae-Kyu;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1026-1030
    • /
    • 2010
  • This paper summarizes the activities performed for the development of a BLDC(Brushless Direct Current) motor driven cryogenic thrust control valve with application to KSLV-II rocket engine. The developed thrust control valve can modulate the flow rate of liquid oxygen under cryogenic temperature of 90K and high pressure of 113.2 bar with the help of electro-mechanical actuator driven by a BLDC motor. This valve can be applied to an engine combustion test after minor change because all development certification test have been performed successfully.

Design and Performance Evaluation of a Flow Regulator for Thrust Control of a Liquid Rocket Engine (액체로켓엔진 추력제어를 위한 유량제어밸브의 설계 및 성능 평가)

  • Jung, Tae-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.443-446
    • /
    • 2012
  • A thrust control valve of a liquid rocket engine plays a role to increase or decrease the thrust of an LRE by modulating the flow rate of propellant into a gas-generator. This paper deals with a flow regulator that has functions of not only modulating thrust but also maintaining constant flow rate regardless of pressure change at inlet or outlet of the flow regulator. A direct acting flow regulator was fabricated and tested for the comparison of experimental and simulation results under steady-state conditions. The drawbacks and limitations of the flow regulator were analyzed. Also the new design of a flow regulator was proposed.

  • PDF

Flow Rate Control Prediction Modeling for Large Liquid Rocket System During Engine Start Up (대형 로켓엔진시스템의 시동 시 유량제어 예측 모델링)

  • Jeong, Yu-Shin;Kim, Sang-Hoon;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.8-13
    • /
    • 2011
  • 본 연구에서는 대형 로켓엔진시스템의 시동 시 안정적인 유량공급을 위한 제어기 설계가 이루어졌다. 펌프, 오리피스, 제어밸브, 파이프, 인젝터 및 재생 냉각채널과 같은 엔진시스템 구성품들에 대한 동특성 모델링을 수행하였고 유량공급 제어가 가능한 밸브의 구동신호를 조절 가능한 PID 제어기를 설계하였다. 시동 시 안정적인 유량공급을 위하여 실험을 통해 얻은 밸브의 적정 개도율을 적용시켰으며, 이를 기준으로 하여 제어밸브의 작동신호를 조절하여 유량비를 제어하였다. 시뮬레이션 한 결과 제어기를 통해 시동 시 정상추력까지 유량공급을 제어 하는 방법이 적절함을 확인하였다.

  • PDF

Evaluation of the Inherent Flow Coefficient of the Control Valve in the Liquid Propellant Rocket Engine (액체로켓 엔진 성능 보정용 제어밸브의 고유유량특성 계산)

  • Park, Soon-Young;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.585-589
    • /
    • 2010
  • It is important for the liquid rocket engine to meet the exact performance requirements in order to guarantee the successful mission of the launch vehicle. Usually, a ground combustion test for the engine is conducted to reduce the performance error and for the tuning. For the gas-generator (GG) cycle engine, this adjustment process can be easily tuned by means of the control valves. A linearized correlation between the process parameters of the control - the combustion chamber pressure and the mixture ratio of engine - and the independent parameter of the control- rotational angle of the control valve - could be suitable to reduce the tuning errors. Also this linearity can reduce the effort for the tuning and make the process more explicit by ensuring a more intuitive control. In this point, we proposed an algorithm in the frame of the in-house-developed program to obtain the control valves' inherent characteristics which satisfy the linearity.

  • PDF

Effects of Intake and Exhaust Valve Timing on Combustion and Emission Characteristics of Lean-Burn Direct-Injection LPG Engine (직접분사식 희박연소 LPG엔진에서 흡배기 밸브시기가 연소 및 배기특성에 미치는 영향)

  • Park, Cheolwoong;Kim, Taeyoung;Cho, Seehyoen;Oh, Seungmook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • In order to meet the enforced emission regulations and reduce fuel consumption, various new technologies are employed in engines. The problem of NOx emissions under a lean mixture condition should be solved, because a lean-burn direct-injection engine can realize stable lean combustion with a stratified mixture, which results in improvements in fuel economy and emissions. This study investigated the effects of intake and exhaust valve timing changes on the performance and emission characteristics of a lean-burn LPG direct-injection engine. Under a partial-load operating condition without throttling, an increase in the intake valve opening led to an increase in NOx emissions due to an increase in the amount of excess air. The fuel consumption deteriorated with an increase in the exhaust valve opening due to a decrease in the expansion work and an increase in the pumping loss.

A Mathematical Model of Liquid Rocket Engine Using Simulink (Simulink를 이용한 액체로켓 엔진의 수학적 모델링)

  • Park, Soon-Young;Cho, Won-Kook;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.82-97
    • /
    • 2009
  • In this study, a linearlized model of liquid rocket engine specifically for the gasgenerator cycle one was developed to serve as a basic control model. A commercial software Simulink was used for the modeling. Using this tool we studied the throttling characteristic of engine around its nominal mode. To obtain the effect of the throttle valve design on the engine's control characteristic, we included mathematical model of the control valve with driving motor and the pressure stabilizer which installed on the gas-generator fed line to sustain the mixture ratio of the gas-generator.

  • PDF

A Study on the Dynamic Characteristics of Polydyne cam Valve Train (폴리다인 캠 밸브 트레인의 동적 특성에 관한 연구)

  • You, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.441-448
    • /
    • 2011
  • It is very important that establishing the valve train equations and representing the behavior of the valve train parts. To maintain the specific efficiency of running engine, the cam profile of valve train has more specific influence on the adequate behavior of the valve train than a valve clearance, heat-resistance and durability of parts. The polynomial cam, the multipol cam and polydyne cam profie are widely used to represent cam behaviour. In this study, using polydyne cam design profile equations which is more adequate for representing high speed engine, the geometrical modeling and mathmatical variable analysis are established to analysis the valve behaviour.

Characteristics of Liquid Rocket Engine Simulation System Using Control Valve (제어밸브를 이용한 액체로켓엔진 모사시스뎀 특성)

  • Lee Joons-Youp;Jung Tae-Kyu;Han Sang-Yeop;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.74-84
    • /
    • 2005
  • This paper include the investigation of finding the system characteristics of facility by simulating open-type turbo-pump fed system, which has commercial control valves, using AMESIM (Advanced Modeling Environment Simulation) commercial software. After developing a flight-type control valve on the basis of the results, the system characteristics of facility for control and valve tests is estimated. Especially, one of purposes of this paper is to find PID value of each commercial control valve in the facility for system test. To find suitable control logic, PI and PID modes are also compared. This paper also introduces design parameters of valve and equipment for thrust control and TDS simulation, which are using control valves.

Evaluation of the Inherent Flow Coefficient of the Control Valve in the Liquid Propellant Rocket Engine (액체로켓 엔진 성능 보정용 제어밸브의 고유유량특성 계산)

  • Park, Soon-Young;Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.73-78
    • /
    • 2011
  • When a liquid rocket engine - specifically for the gas-generator cycle engine has throttle valves to control the thrust level and mixture ratio of the engine, it is possible to adjust the inherent flow characteristics of the control valves in order to secure a linearized correlation between the control-process-parameters like the thrust or mixture ratio of an engine and the throttle angle of valve. These linearities can reduce the complexity of the control process and make the process more explicit by ensuring the intuitive control. In this point, we proposed an algorithm within the frame of the in-house-developed program to obtain the control valves' inherent flow characteristics which satisfy the linearity, and calculated the sensitivities of control valves with respect to the throttle angle. Also, we compared the obtained inherent flow characteristics with the existed data and concluded the results are satisfactory.

Performance Characteristics of an Electronically Controlled EGR Valve for Diesel Engines (디젤엔진용 전자식 EGR 밸브의 성능 특성)

  • Chung, Jin-Eun;Chin, Young-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.185-188
    • /
    • 2007
  • Lately, the modulated EGR system that includes EGR valve and EGR cooler is being installed in diesel engines fur the purpose of the simultaneous reduction of NOx and PM. In this study. we designed and constructed a test bench for the performance evaluation of the modulated EGR system, and tested an electronically controlled EGR valve for 2.0 L diesel engines. The performance of the EGR valve was evaluated in terms of the valve lift behavior. the valve opening/closing response, and the mass flow rate through the valve. The valve lift with respect to the duty ratio of PWM signal was non-linear, and followed a different path fur valve opening and closing, that is, hysteresis. The valve opening response was concluded satisfactory falling within the usual standard response time. For the duty ratio of 40 to 60%, the mass flow rate through the valve was observed to depend on the pressure difference across the valve as well as the duty ratio, while it solely depended on the pressure difference fur the duty ratio above 60%.

  • PDF