• Title/Summary/Keyword: 엔드밀 공구

Search Result 152, Processing Time 0.025 seconds

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (l) Cutter Axis Direction Verctor and Post-Processing (5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (I) 공구축 방향의 벡터와 포스트 프로세싱)

  • 조현덕;전용태;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2001-2011
    • /
    • 1993
  • This study deals with the machining of sculptured surfaces on 5-axis CNC milling machine with end mill cutter. The study (I) has the following contents. In 5-axis CNC milling, CL-data consist of CC-data and cutter axis direction vector at the CC-point. Thus, in machining of the sculptured surface on 5-axis CNC milling machine, determination of the direction vector of the milling cutter is very important. The direction vector is obtained by the fact that bottom plane of the milling cutter must not interfere with the free-form surface being machined. The interference is checked by the z-map method which can be applied in all geometric types of the sculptured surfaces. After generating NC part programs from 5-axis post-processing algorithms, sculptured surfaces were machined with 5-axis CNC milling machine (CINCINNATI MILACRON, 20V-80). From these machining tests, it was shown that the machining of the free-form surfaces on 5-axis CNC milling machine with the end mill has smaller cusp heights and shorter cutting time than on 3-axis CNC milling machine with the ball-end mill. Thus, 5-axis CNC end milling was effective machining method for sculptured surfaces. The study (II) deals with the prediction of cusp height and the determination of tool path interval for the 5-axis machining of sculptured surfaces on the basis of study(I).

The Characteristics of the Milling Tool Deflection According to the Variation of Helix Angle (헬릭스각의 변화에 따른 밀링공구의 변위 특성 연구)

  • Maeng, Min-Jae;Chung, Joon-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.860-866
    • /
    • 2004
  • In the end milling operation the deflection of the cutter is an important factor affecting the accuracy of machining, with implications on the selection of cutting parameters and economics of the operation. Several studies were devoted to the end mill deflection and its effects, notably, providing a useful insight into the problem. Although the deflection affects adversely the accuracy, the flexibility of the cutter is beneficial in attenuating the overload in a sudden transient situation, as well as in attenuating chatter. The deflection of the end mill was studied both experimentally with strain gauge, tool dynamometer, laser measuring apparatus and on a finite element model of the cutting using ANSYS software. The deflection of machining tool with various helix angles was studied with FEM simulation and experiment. ANSYS analysis performed on the finite element model of the end mill provides deflection results which agree within 15.0% with the experimental ones.

Fracture Detection of Milling Cutter Using Cutting Force and Acoustic Emission Signals (절삭력과 음향방출 신호를 이용한 밀링공구의 파손 검출)

  • Maeng, Min-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.28-37
    • /
    • 2004
  • An on-line monitoring system of endmill failure such as weal, chipping, and fracture is developed using AE, cutting force Characteristic variations of AE and cutting force signals due to endmill failure are identified as follows. When endmill fracture occurs, AE count rate shows a rapid Increase in conjunction with a subsequent decrease while a standard deviation of the principal cutting force Increases significantly. The increase of AE count rate precedes the Increase of standard deviation of principal cutting force. Chipping results in relatively small increase and decrease of AE count rate without any significant variation of the cutting force Gradual increase of AE count rate and mean principal cutting force are Identified to be related with the wear of cutter. A cutter fracture detection algorithm is developed based on the present results. The signals me normalized to enhance the applicability of the algorithm to Wide those of fresh cutters, and qualitative characteristics of AE signals encountered at the moment of fracture are employed. It is demonstrated that the algorithm can detect the cutter fracture successfully.

  • PDF

A Study on Geometric Definition and 5-Axis Machining of End Mill with Insert Tip (Insert Tip용 End Mill 공구의 형상정의와 5-축 가공에 관한 연구)

  • 조현덕;박영원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-9
    • /
    • 2002
  • This study describes the geometric characteristics and the 5-axis machining method in order to make end mill cutter coming with insert tips. End mill geometry is consisted of flute part and insert tip part. Flute part modeled by using ruled surfaces with constant helix angle, and insert tip part modeled by rectangular planes containing tapped hole of specified direction in its center. In this study, the modeled insert tip part considered both of a radial rake angle and a axial rake angle, because they were important cutting conditions. In order to machining the virtual end mill defined from geometric characteristics, we programmed a special software to machining the end mill considered in this study. This software can generate NC-codes about following processes, end milling or ball end milling of flute part end milling of rectangular plane, centering of hole, drilling of hole, and tapping of hole. Ant sampled end mills were modeled and machined on 5-axis CNC machining center with two index tables. Since machined end mills were very agreeable to designed end mills, we saw that the method proposed in this study can be very useful for manufacturing of end mill body with insert tip.

A Study on Machining of Uncut Volume at the Boundary Region of Curved Surfaces (곡면 경계부 미절삭 체적의 잔삭 가공에 관한 연구)

  • Maeng, Hee-Young;Yim, Choong-Hyuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.251-259
    • /
    • 2010
  • It is presented in this study a new efficient intelligent machining strategy, which can be used to remove the uncut volume at the boundary region of curved surfaces caused by cutter interference. The geometric form definitions and recognition of topological features of the surface triangulation mesh are used to generate cutter paths along successive and interconnected steepest pathways, that minimize the cusp height left after flat end milling. In order to machine the uncut volume gradually, the z-map cutter centers are adjusted to avoid cutter interference for the 6 kinds of avoidance types. And then, the generative subsequent paths are sequenced to determine the second step cutter paths for the next uncut volume. For the 2 kinds of test models with convex and concave surface region, the implemented software algorithm is evaluated by investigating the residual swelling of uncut volume for each machining step.

Evaluation of the Economics of High Speed Machining Considering Environmental Effects (환경영향을 고려한 고속절삭가공의 경제성 평가)

  • Chang, Yoonsang;Kim, Sun-Tae
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.182-189
    • /
    • 2006
  • In this study, high speed machining is evaluated with regard to economical and environmental effects. Considering environmental loads, machining costs are analyzed with the mathematical models of machining economics and cutting fluid loss. Data from the tool life experiments of high speed milling and turning are used for the analysis. The analysis of high speed milling shows that the machining cost decreases as increasing the cutting speed. In turning process, the cooling method using cutting fluid shows the minimum machining cost. Considering both machining and environmental costs, cooling method using cold air is superior to other methods.

  • PDF

Regrinding Effect of Flat End-Mill Tool for Recycling of Tungsten Carbide (WC-Co) Material (초경소재 재활용을 위한 플랫 엔드밀공구의 재연삭 효과)

  • Kang, Myung-Chang;Kim, Min-Wook;Kwon, Dong-Hee;Park, In-Duck;Jeong, Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.635-639
    • /
    • 2008
  • In this paper, experimental studies of the regrinding of tungsten carbide (WC-Co) tools for high-speed machining were conducted. Regrinding and a subsequent evaluation test were carried out for a flat endmill tool with diameters of 10 mm and 3 mm using a CNC five-axis tool grinder and a CNC three-axis machining center. Tool wear on the two types of endmill tools increased as the cutting length increased, and the tool wear was not influenced by the regrinding state. In case of the micro endmill with a tool diameter of 3 mm, the effective regrinding time was determined for a flank wear threshold of 0.3 mm considering the tool life according to cutting length. The tool lives of the 10 mm and 3 mm endmill tools were increased by 80% and 72%, respectively. This conclusion proves the Feasibility of the recycling of tungsten carbide materials in the high-speed machining of high-hardened materials for industrial applications.

Machinability evaluation according to variation of tool shape in high speed machining (고속가공용 엔드밀공구의 형상변화에 의한 성능평가)

  • 강명창;김정석;이득우;김광호;하동근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.393-398
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining in not close behind that of machine tool. In this study, several types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge, rake angle and relief angle. Machinability is measured by cutting force, tool life, tool wear, chip shape and surface roughness according to cutting length. 3-axis cutting forces are acquired from the invented tool dynamometer for high speed machining. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. By above results, it is suggested the endmill tool with $45^{\circ}$ helix angle, 6 cutting edge, $-15^{\circ}$ rake angle and $12^{\circ}$ relief angle be suitable for high speed machining

  • PDF

A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining (평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Park, In-Su;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.