• Title/Summary/Keyword: 엑스선 영상

Search Result 120, Processing Time 0.024 seconds

An Experimental Comparative Study of Radiography, Ultrasonography and CT Imaging in the IV Catheter Fragment (정맥내 카테터 조각의 엑스선, 초음파 및 CT 영상의 실험적 비교 연구)

  • Kweon, Dae Cheol
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.185-191
    • /
    • 2016
  • The objective of this study was to detect the fragments generated during IV (intravenous) catheter injection of contrast medium and drug administration in a clinical setting and removal was performed by experimentally producing a phantom, and to compare the radiography, ultrasonography, and multi-detector computed tomography (MDCT) imaging and radiation dose. A 1 cm fragment of an 18 gage Teflon$^{(R)}$ IV catheter with saline was inserted into the IV control line. Radiography, CT, and ultrasonography were performed and radiography and CT dose were calculated. CT and ultrasonography showed an IV catheter fragment clinically and radiography showed no visible difference in the ability to provide a useful image of an IV catheter fragment modality (p >.05). Radiography of effective dose ($0.2139mSv{\cdot}Gy^{-1}{\cdot}cm^{-2}$) form DAP DAP ($0.93{\mu}Gy{\cdot}m^2 $), and dose length product (DLP) ($201mGy{\cdot}cm$) to effective dose was calculated as 0.483 mSv. IV catheter fragment were detected of radiography, ultrasonography and CT. These results can be obtained by menas of an excellent IV catheter fragment of detection capability CT. However, CT is followed by radiation exposure. IV catheter fragment confirming the position and information recommend an ultrasonography.

Optimum Design and Tolerance Analysis of Multilayer Mirror for Obtaining Characteristic X-ray of 17.5 keV (몰리브덴(Mo) 특성방사선 획득을 위한 다층박막 거울의 최적 설계 및 공차 분석)

  • Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.4
    • /
    • pp.23-28
    • /
    • 2009
  • Monochromatic X-ray can make a medical image of high contrast under a low radiation dose and can be easily generated by combining an X-ray tube and a multilayer mirror. A W/C multilayer mirror was optimally designed for a characteristic X-ray generated from a X-ray tube with Mo target. The d-spacing and the thickness ratio in design parameters were determined under the maximum-reflectivity condition. Tolerances for deposition and alignment of the W/C multilayer mirror were calculated. Within a deposition tolerance of 0.2nm and a alignment tolerance of ${\pm}0.01^{\circ}$, 85% of the theoretical peak reflectivity could be achieved. A multilayer mirror can be widely used for making medical images because of generating high fluence monochromatic X-ray.

  • PDF

Monte-carlo Simulation for X-ray Photon Counting using MPPC Arrays (배열형 실리콘광증배소자를 이용한 포톤 카운팅 검출기 설계를 위한 몬테칼로 시뮬레이션 연구)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.929-934
    • /
    • 2018
  • Studies for counting and detecting X-rays for the improvement of image quality and material analysis are active. In this work, the detector for X-ray photon counting was designed using Multi-pixel photon counter (MPPC) array and the detector characteristics were evaluated through simulation. Geant4 Application for Tomographic Emission (GATE) was used to obtain the position where the X-ray and the scintillation interacted, and this position was used as the light generation position of DETECT2000. 0.5 mm and 1 mm thick Gadolinium Aluminium Gallium Garnet (GAGG) scintillators were used and the light generated through a $4{\times}4$ array of MPPCs was acquired. The spatial resolution of the designed detector was evaluated by reconstructed image using the light signal acquired for each channel. We obtained images of more than 2 lp/mm in both 0.5 mm and 1 mm thick GAGG scintillation. When this detector is used in a X-ray system, a low-cost system capable of photon counting can be made.

A Study of Radiographic Methods to X-ray Study of Patients with Spinal Scoliosis and Vertebrae Bone Fracture of Lumbar Spine (척주측만증과 허리뼈 골절 수술 환자의 엑스선 촬영법 연구)

  • Ahn, Byung-Ju;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • The Study In order to obtain images of overlap of the two iron cores in the spinal cord simple x-ray scan after surgery of patients with ulcer lateral sclerosis and a fractured backbone, the researcher conducted a subjective evaluation on five radiographers of the university hospital's imaging department for more than 10 years. The results of the experiment showed that the lateral shot of lateral scoliosis of the spinal cord was taken with the middle face of the IR plane, and then the X-ray tube angle was taken vertically with the vertical spinal column fan-tom position, resulting in two overlapping images and high scores in the subjective evaluation. In addition, lateral shots of the lumbar dislocation fractured lumbar vertebrae were taken with the forehead aligned with the center of the IR plane and then with the X-ray angle perpendicular to the fourth waistline and the angle of the spinal cord perpendicular to the fourth waistline, the image of the two iron cores could be obtained from the radiographer.

Electron Emission Simulation of Carbon Nanotube-based Electron Emitter for Micro Focused X-ray Source

  • Lee, Seung-Ho;Ryu, Je-Hwang;Jung, Gyeong-Bok;Lee, Sung-Hoon;Kim, Kyung-Sook;Park, Hun-Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.349-349
    • /
    • 2011
  • 탄소나노튜브의 전자방출 특성을 활용하면 저전압으로 냉전자를 빠른 스위칭 속도로 전자를 용이하게 제어가 가능하다. 이로 인한 고성능 엑스선 소스를 이용하여 의료영상진단과 보안검색 분야에서 많이 사용될 것으로 예상이 된다. 본 연구에서는 고성능 탄소나노튜브 기반 엑스선의 미소초점 형성을 위한 전자 방출 시뮬레이션을 실시하였다. 3극관(애노드, 게이트, 캐소드)에서 2개의 포커싱 전극을 추가한 5극선관의 전자방출 궤적에 대한 시뮬레이션을 진행하였다. 3극관을 구성하여 애노드와 게이트에 일정 전압을 정해준 후, 2개의 포커싱 전극의 전압, 포커싱 전극간의 거리, 그리고 포커싱 전극의 내부직경을 조절함으로써 애노드 상에서의 전자의 초점이 작아지는 것을 알 수 있었다. 마이크로 포커스 엑스레이 소스는 의료영상진단에 있어서 고해상도 의료기기로의 응용이 가능하다.

  • PDF

duoPIXTM X-ray Imaging Sensor Composing of Multiple Thin Film Transistors in a Pixel for Digital X-ray Detector (픽셀내 다수의 박막트랜지스터로 구성된 듀오픽스TM 엑스선 영상센서 제작)

  • Seung Ik, Jun;Bong Goo, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.969-974
    • /
    • 2022
  • In order to maximize dynamic range and to minimize image lag in digital X-ray imaging, diminishing residual parasitic capacitance in photodiode in pixels is critically necessary. These requirements are more specifically requested in dynamic X-ray imaging with high frame rate and low image lag for industrial 2D/3D automated X-ray inspection and medical CT imaging. This study proposes duoPIXTM X-ray imaging sensor for the first time that is composed of reset thin film transistor, readout thin film transistor and photodiode in a pixel. To verify duoPIXTM X-ray imaging sensor, designing duoPIXTM pixel and imaging sensor was executed first then X-ray imaging sensor with 105 ㎛ pixel pitch, 347 mm × 430 mm imaging area and 3300 × 4096 pixels (13.5M pixels) was fabricated and evaluated by using module tester and image viewer specifically for duoPIXTM imaging sensor.

Acquisition of Monochromatic X-ray Using Multilayer Mirror (다층박막 거울을 이용한 단색 엑스선 획득)

  • Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • A hard X-ray microscope system for obtaining images of nano-spatial resolution has been widely studied and requires monochromatic X-ray. A multilayer mirror of 84% reflectivity was designed to acquire tungsten characteristic X-ray of 8.4 keV from the white beam generated from an X-ray tube, and the C/W multilayer mirror of $50{\times}50\;mm$ size and 5.65 nm d-spacing was fabricated by the ion-beam sputtering system. The C/W multilayer had a uniformity of 99.5%, and the structure of the multilayer mirror was verified by a TEM image. The obtainable x-ray reflectivity for the C/W multilayer mirror at 8.4 keV was estimated from measuring the X-ray reflectivity using the copper characteristic X-ray of 8.05 keV. Monochromatic X-ray of 8.4 keV was generated by combining a X-ray tube, and the reflectivity and monochromaticity were 77.1% and 0.21 keV, respectively. Monochromatic X-ray generated from the combination of an X-ray tube and an C/W multilayer mirror has enough potential to use X-ray source for hard X-ray microscope system of laboratory size. If the C/W multilayer mirror of d-spacing of a few nanometers can be fabricated, monochromatic X-ray corresponded to 17.5 keV, molybdenum characteristic X-ray, can be obtained and applied to mammography in the medical application.