• Title/Summary/Keyword: 에피사이클로이드

Search Result 4, Processing Time 0.021 seconds

A Study on Shape Design Method by Instant Velocity Centers of Rotating Outer-Ring Type Epicycloid Plate Gear (순간속도중심을 이용한 외륜회전형 에피사이클로이드 판기어의 형상설계법에 관한 연구)

  • 장세원;신중호;권순만;윤호업
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1398-1401
    • /
    • 2004
  • This paper proposes a new approach for the shape design of the rotating outer-ring type epicycloid plate gear by using instant velocity center. First, this method defines the instant velocity centers for rotating outer-ring type epicycloid plate gear and calculates the contact angles and the contact points by using the geometric relationships and the kinematic properties of the reducer. Second, it generates the full shape of the cycloidal plate gear. Finally, the paper develops CAD-program for construction of the design automation using the proposed method. This CAD-program is developed to have the functions of the friendly user interface and the simulation of the real operation for the cycloid reducer.

  • PDF

A Study on Contact Force Analysis of Fixed Outer-Ring Type Epicycloid Plate Gear for Cycloidal Speed Reducer with Friction Effect (외륜 고정형 에피 사이클로이드 감속기의 작용력 해석법에 관한 연구)

  • Chang S.W.;Hong J.P.;Shin J.H.;Kwon S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1652-1655
    • /
    • 2005
  • All teeth on the cycloidal plate gear exist in the contact motion with rollers and the forces are interacted between roller gears with cycloidal plate gears. So, the contact forces and friction forces must be required to improve the accuracy in design procedures of cycloidal speed reducers. This paper presents a force analysis considered the friction effect approach derived by static force equilibrium condition, geometrical adaptation, instant velocity center method and relative velocity method. Finally, the paper develops CAD-program for the construction of the design automation using the proposed method.

  • PDF

LOGO와 함께 곡선 만들기 - 다각형 패턴의 관점에서

  • Kim, Hwa-Kyung;Song, Min-Ho
    • East Asian mathematical journal
    • /
    • v.26 no.4
    • /
    • pp.447-461
    • /
    • 2010
  • Papert [17] introduced the LOGO environment in which we make a curve using LOGO commands (FORWARD, ROTATE). We call this geometry as turtle geometry. This environment has influenced many researchers and designers of computers and mathematics education. But the curve that we can make using LOGO command is elementary or too difficult. Polygon and circle is elementary and making other curves is difficult. In this paper, we introduce the method of drawing some other curves mediating new command. First, we study epicycloid and hypocycloid in the historical and the physical context. And we introduce the method of making epicycloid and hypocycloid using vector addition. Next we study the polygon patterns of this curve. Finally, we extend the method for making more general curve and we improve the computer environment using this metaphor.

Design of Gerotor Using Cycloid and Circular-Arc Curves (사이클로이드 및 원호 곡선을 이용한 제로터 개발)

  • Choi, Tae-Hoon;Kim, Moon-Saeng;Lee, Geun-Su;Jung, Sung-Yuen;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.241-250
    • /
    • 2011
  • The new gerotor developed in this paper has an inner rotor in which a circular arc is inserted between the hypocycloid and epicycloid curves, whereas the outer rotor is designed using the simulation results for the rotor and a modification method. The new gerotor has no cusps and loops and no limit on the eccentricity. We increase the average flow rate by adding a new design parameter, $\gamma$, which is the inclined angle of the inner rotor at the intersection of the hypocycloid and the circular arc. A calculation method to calculate the chamber area is also developed. This method can also be used to calculate the flow rate and flow rate irregularity when the contact points are unknown. The control of eccentricity and $\gamma$ is expected to lead to an efficient rotor.