• 제목/요약/키워드: 에틸렌 반응로

검색결과 255건 처리시간 0.028초

Ranunculus sceleratus 엽병의 에틸렌 매개 생장반응조절에 있어서 Spermine의 관여 (Involvement of spermine in Control of Ethylene-Mediated Growth Response in Ranunculus sceleratus Petioles)

  • 정미숙
    • Journal of Plant Biology
    • /
    • 제35권4호
    • /
    • pp.425-429
    • /
    • 1992
  • Ranunculus sceleratus 엽병의 세포 신장은 에틸렌에 의하여 촉진되는 것으로 알려져 있다. 오옥신을 처리한 엽병조직 절편에서 spermine은 세포 신장과 에틸렌의 생성을 비슷한 양상으로 억제하였다. Spermine 농도에 대한 오옥신 유도 에틸렌 생성 억제반응은 ACC에 의한 에틸렌 생성의 경우도 유사한 양상을 나타내었으며 이는 폴리아민이 ACC가 에틸렌으로 전환되는 과정을 억제한다는 것을 시사한다. 오옥신 유도 에틸렌 생성은 폴리아민 생합성 억제제인 DFMA아 DFMO에 의하여 각각 현저하게 촉진되었으며 DFMA에 의한 에틸렌 생성의 증가는 spermine을 고농도로 처리하므로써 완전히 소멸되는 결과를 얻었다. 이러한 결과들은 오옥신과 에틸렌에 대한 Ranunculus의 세포성장 반응에서 내생 폴리아민이 조절 역할을 수행한다는 가능성을 입증하는 것이다.

  • PDF

폴리(에틸렌 나프탈레이트)의 축중합 반응에서 물질 전달 현상 (Mass Transfer Phenomena in Polycondensation Reaction of Poly(ethylene naphthalate))

  • 이성진;정성일
    • 폴리머
    • /
    • 제28권2호
    • /
    • pp.121-127
    • /
    • 2004
  • 폴리(에틸렌 나프탈레이트)의 축중합 반응은 가역반응이므로 부반응 물질인 에틸렌 글라이콜의 신속한 제거가 높은 분자량의 제품을 얻는데 매우 중요하다. 본 연구에서는 폴리(에틸렌 나프탈레이트)올리고머로 박막을 제조하여 실제 반응기와 동일한 조건 하에서 (28$0^{\circ}C$, <0.1mmHg) 반응시켜 이 때 일어나는 물질 전달 현상을 관찰하고자 하였다. 여러 가치 두께의 박막을 제조하여 반응 실험한 결과 두께가 0.025cm 이하의 영역에서는 박막에서의 물질 전달 저항이 크지 않아 총괄 반응 속도에 영향을 미치지 않음을 관찰하였다. 물질 전달 모델 및 확산 모델을 사용하여 반응 결과를 예측한 결과 두 모델 모두 실험 결과를 잘 예측하였으나 확산 모델의 경우 중합도가 낮은 영역에서 물질 전달 모델에 비해 반응이 더 빨리 진행되는 경향을 보였다. 두 모델을 이용하여 물질 전달 관련 계수를 예측한 결과 폴리(에틸렌 나프탈레이트)에서의 확산 계수는 4.7${\times}$$10^{-6}$$\textrm{cm}^2$/sec, 물질 전달 계수는 1.4${\times}$$10^{-4}$cm/sce로 폴리(에틸렌 테레프탈레이트) 경우보다 작은 값을 보였다.

Ag/α-Al2O3 촉매상에서의 에틸렌 부분산화반응에 미치는 흡착산소종의 영향 (The Effect of Adsorbed Oxygen Species on the Partial Oxidation of Ethylene over Ag/α-Al2O3)

  • 백충훈;이상기;여종기;이호인
    • 공업화학
    • /
    • 제5권4호
    • /
    • pp.609-615
    • /
    • 1994
  • 기체크로마토그래프에 직접 연결한 펄스 반응장치를 이용하여 10wt% $Ag/{\alpha}-Al_2O_3$ 촉매상에서 에틸렌 부분산화반응을 수행하였다. 산소가 분자흡착상태로 존재하기 어려운 실험온도에서 산소를 주입한 후 에틸렌을 주입하였을 때 산화에틸렌이 발생하였으며, 이 결과로부터 원자상태의 흡착산소가 산화에틸렌 생성에 관여함을 알 수 있었다. 흡착산소량과 몸체산소량을 감소시키면 산화에틸렌의 선택도는 감소하였다. 생성된 산화에틸렌은 에틸렌과 흡착산소로 분해되거나 아세트알데히드로 이성질화되었으나, 아세트알데히드로의 이성질화반응은 먼저 흡착된 산소에 의해서 크게 억제되었다.

  • PDF

테트라메틸에틸렌에 대한 트란스-1,2-비스피라질에틸렌의 광첨가반응 (Photoaddition Reactions of trans-1,2-Bispyrazylethylene to Tetramethylethylene)

  • 심상철;조진호
    • 대한화학회지
    • /
    • 제23권5호
    • /
    • pp.325-328
    • /
    • 1979
  • 트란스-1,2-비스피라질에틸렌(BPE)과 테트라메틸에틸렌(TME)용액에 빛을 쪼이면 이에대응한 탄화수소와는 달리 자유라디칼중간체를 거쳐 광첨가반응이 일어난다. 이 광첨가반응은 BPE의 $^1(n,\;{\pi}^*)$ 상태가 어느정도 자유라디칼 성격을 띄어 TME로 부터 알릴위치에 있는 수소원자를 탈취하여 일어난다. 주생성물을 대롱 크로마토그래피와 진공분별승화법으로 분리하여 2,3-디메틸-5,6-비스피라질-2-헥센임을 밝혔다.

  • PDF

과실 저장성 향상을 위한 에틸렌 흡착제 개발 (Development of Ethylene Adsorbent for Fruits Storage)

  • 안영직;최종승;이경욱
    • 자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.81-85
    • /
    • 1995
  • 과실의 저장 중 과실로부터 발생된 에틸렌을 제거하여 저장성을 증대시키기 위한 효과적인 에틸렌흡착제를 개발하고 자 본 시험을 수행하였다. $ICI_3$$KBrO_3$을 반응주제로 하여 각각 활성탄에 흡착시켜 제조한 흡착제가 에틸렌 흡착효과가 우수하였고, 이때 황산을 반응보조제로 하였을 대에 흡착효과가 증대되었다. 흡착제의 에틸렌 흡착효과는 포화수증기와 고탄산가스의 조건에서는 저하되었고 특히 포화수증기 조건에서 심화되었다.

  • PDF

유전체 배리어 방전 플라즈마를 이용한 에틸렌의 분해 (Decomposition of Ethylene by Using Dielectric Barrier Discharge Plasma)

  • 장두일;임태헌;이상백;목영선;박회만
    • 공업화학
    • /
    • 제23권6호
    • /
    • pp.608-613
    • /
    • 2012
  • 유전체 배리어 방전 플라즈마를 모사 농산물 저장시설($1.0m^3$)의 에틸렌 제거에 적용하였다. 에틸렌이 포함된 공기를 플라즈마 반응기에 유입시켜 처리한 후 다시 농산물 저장시설로 재순환하는 방식으로 시험을 수행하였다. 주요 운전변수는 방전전력, 순환기체 유량, 초기 에틸렌 농도 및 처리시간이었다. 에틸렌의 분해속도는 주로 방전전력과 처리시간에 의해 결정되었다. 다른 조건을 일정하게 유지한 상태에서 플라즈마 반응기 후단에 이산화망간 오존분해 촉매를 설치했을 경우 오존분해 촉매가 없을 때 보다 에틸렌 제거속도가 더 빨랐는데, 이 결과는 플라즈마 반응기에서 배출되는 오존이 농산물 저장시설에 유입 축적되어 에틸렌을 추가적으로 분해했기 때문이다. 에틸렌 초기 농도 50 ppm을 기준으로 하면 이를 완전히 분해하기 위한 에너지 요구량은 약 60 kJ이었다.

초임계 메탄올을 이용한 가교 폴리에틸렌의 탈가교화 (Decrosslinking of Cross-linked Polyethylene using Supercritical Methanol)

  • 홍순만;조항규;구종민;이장훈;박완용;이홍식;이윤우
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.63-68
    • /
    • 2008
  • 초임계 유체 공정을 이용하여 가교 폴리에틸렌 수지를 탈가교화하여 재활용하는 방법을 조사하였다. 가교 폴리에틸렌 수지는 메탄올을 이용한 초임계 반응 시 탈가교화가 이루어져 재활용 될 수 있다. 초임계를 이용한 탈가교화 반응은 반응온도에 의해 크게 영향을 받으며 $360^{\circ}C$부터 $400^{\circ}C$ 구간에서 온도의 증가에 따라 탈가교화가 급격히 촉진되었다. 반응온도의 증가에 따라 생성물인 탈가교 폴리에틸렌의 가교도, 분자량, 기계적 물성은 감소했지만, $360^{\circ}C$에서 탈가교된 폴리에틸렌은 가교전의 원료로 사용된 폴리에틸렌과 비교할만한 연신강도와 내충격강도를 보였다. 본 연구의 모든 반응조건에서 폴리에틸렌의 주쇄의 화학구조는 반응조건에 거의 영향을 받지 않았다.

에틸렌글리콜을 이용한 폐폴리카보네이트 해중합 특성 (Depolymerization of Polycarbonate Waste by Ethylene Glycol)

  • 김동필;김보경;조영민;한명완;김범식
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.875-879
    • /
    • 2008
  • 본 연구에서는 촉매를 사용하지 않고 에틸렌글리콜(EG)을 이용하여 비스페놀 A(BPA)를 얻기 위한 폴리카보네이트(PC) 해중합 방법에 대하여 연구하였다. 반응시간, 반응온도, 에틸렌글리콜 양에 따른 비스페놀 A의 수율에 대하여 알아 보았으며, 반응속도식을 구하였다. 에틸렌글리콜에 의한 해중합 반응은 반응 온도에 따라 활성화 에너지가 높은 쪽에서 낮은 쪽으로 변하였고, 이는 이 반응이 여러 단계의 직렬반응으로 이루어진 것을 나타낸다. 비스페놀 A의 최대수율은 EG/PC 무게비 4, 반응온도 $220^{\circ}C$, 반응시간 85분에서 95.6%였다.

다공질 세라믹지지 촉매 상에서의 플라즈마 방전을 이용한 휘발성유기화합물의 분해 (Electrical Discharge Plasma in a Porous Ceramic Membrane-supported Catalyst for the Decomposition of a Volatile Organic Compound)

  • 조진오;이상백;장동룡;목영선
    • 공업화학
    • /
    • 제24권4호
    • /
    • pp.433-437
    • /
    • 2013
  • 다공질 세라믹 막을 사용하는 플라즈마-촉매 반응기에서 휘발성유기화합물의 분해가 수행되었다. 저압차 촉매 지지체로 사용된 세라믹 막에 광촉매인 산화아연을 담지하여 휘발성유기화합물의 산화 성능을 개선하고자 하였다. 교류 고전압에 의해 구동되는 플라즈마가 다공질 세라믹 막 내에서 전개되면서 휘발성유기화합물의 분해에 이용되는 라디칼, 오존, 이온, 여기상태 분자 등 다양한 활성성분을 생성하게 된다. 반응기에 공급되는 고전압이 증가함에 따라 플라즈마가 점차 방사방향으로 전개되어, 일정 전압을 넘어서면 세라믹지지체 전체적으로 균일한 플라즈마가 생성되었다. 휘발성유기화합물 분해 성능 평가에는 에틸렌이 이용되었다. 전기에너지밀도, 반응기 입구 에틸렌 농도, 촉매 담지 여부, 기체 조성에 따른 에틸렌 분해효율이 조사되었다. 같은 에너지 밀도에서 비교하면 산화아연이 담지된 촉매에서의 에틸렌 분해 효율이 담지되지 않은 경우보다 더 높은 것으로 나타났으며, 기체 조성 변화 실험을 통해 폐가스의 주요 구성성분인 산소와 질소 모두 에틸렌의 분해를 개시하는데 중요한 역할을 함을 알 수 있었다. 일반적인 기상반응과 달리, 플라즈마 반응기에서의 에틸렌 분해 반응은 활성 성분의 양에 의해 지배되므로, 방전 전력이 동일할 경우 에틸렌 농도가 높아질수록 분해효율이 저하되었다.

모놀리스형 은촉매상에서 에틸렌선택산화반응의 속도론적 고찰 (Kinetics and Mechanism of the Selective Oxidation of Ethylene for Ethylene Oxide over Monolithic Silver Catalyst)

  • 박노범;김상채;선우창신;유의연
    • 공업화학
    • /
    • 제2권2호
    • /
    • pp.165-174
    • /
    • 1991
  • 고정층상압유통식 미분형반응기를 이용하여 모놀리스형 은촉매상에서 에틸렌의 선택산화반응 기구 및 속도식에 관하여 연구하였다. 반응온도 $225^{\circ}C$에서 $300^{\circ}C$까지와 전화율 1.2 %에서 7.5 %까지 범위에서 에틸렌과 산소의 분압을 변화시켜 가면서 산화에틸렌 및 이산화탄소의 생성반응은 Langmuir-Hinshelwood 형 반응기구를 따르며, 은촉매 표면의 활성점에 흡착된 산소원자와 흡착한 에틸렌이 반응하여 산화에틸렌과 이산화탄소가 생성되는 것으로 나타났고, 이들의 생성반응속도식은 각각 다음과 같이 나타낼 수 있었다. $R_{EO}={\frac{k_1K_0{^{1/2}}K_EK_SP_{02}{^{3/2}}P_E}{(1+{\sqrt{K_0P_{02}}}+K_EP_E+K_PP_P)^2(1+{\sqrt{K_SP_{02}})^2}}$ $R_C={\frac{k_2K_0{^3}K_EK_S{^{7/2}}P_{02}{^{13/2}}P_E}{(1+{\sqrt{K_0P_{02}}}+K_EP_E+K_PP_P)^7(1+{\sqrt{K_SP_{02}})^7}}$ 또한 각 온도에 따른 표면반응속도상수와 반응물들의 흡착평형상수를 결정하여 이로부터 표면반응 활성화에너지를 구하였는 바, 산화에틸렌 생성반응의 활성화에너지는 12.2 Kcal/mol 이고 이산화탄소와 물이 생성되는 반응의 활성화에너지는 17.85 Kcal/mol이었다.

  • PDF