• Title/Summary/Keyword: 에크만 분출모델

Search Result 7, Processing Time 0.024 seconds

Non-Linear Ekman Pumping Model (비선형 에크만 분출 모델)

  • Park, Jae-Hyoun;Kim, Jung-Hwan;Kim, Dong-Kyun;Bae, Suk-Tae;Kim, Jung-Ryul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.305-306
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict tile rotating flows more precisely than the classical linear model.

  • PDF

A Numerical Analysis of an Unsteady Flow in a Cavity Using an Ekman Pumping Model (에크만 분출 모델을 이용한 캐버티 내의 비정상 유동특성에 관한 수치해석)

  • 서용권;박춘근;최윤환;문종춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.102-110
    • /
    • 1997
  • A two dimensional shallow-water flow around a cavity driven by a sinusoidally oscillating external flow was studied numerically with an Ekman pumping model. A container model of "T" shape was constructed in the numerical computation for comparison with the experimental observation. The material transport in the external region is in good agreement with the experimentally recorded particle trajectories. It turns out that two large coherent vortices situated in the exterior region of the cavity are responsible for clockwise and counterclockwise drift motions, in large scale, of particles. The Ekman pumping model suggested in this study was found to be satisfactory.isfactory.

  • PDF

The Experimental and Numerical Study on Spin-up Flows in a Rectangular Container with an Internal Cylindrical Obstacle (원형 실린더가 있는 직사각형 욕기내의 스핀-업 유동에 관한 실험 및 수치해석)

  • Park, Jae-Hyun;Suh, Young-Kweon;Kim, Sung-Kyun;Son, Young-Rak
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1765-1770
    • /
    • 2003
  • This paper describes a study of the spin-up of a free-surface fluid in a rectangular container in which an internal cylindrical obstacle is mounted. Experiments and numerical analysis have been carried out for a variety of obstacle position. Increase in the speed of background rotation and near wall position of cylindrical obstacle results in the complex flow structures. Numerical and experimental results agree well with each other and the Ekman-pumping model is also applied to this flow.

  • PDF

A Study on the Spin-up Flow in a Rectangular Container by Using Ekman Pumping Models (Ekman 분출 모델에 의한 직사각형 용기 내의 스핀업 유동 연구)

  • Choe, Yun-Hwan;Park, Jun-Gwan;Seo, Yong-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.680-687
    • /
    • 2001
  • In this study, spin-up flows in a rectangular container are analysed both numerically and experimentally. In the numerical computation, we use two Ekman pumping models, the classical leading order and the first order. We also compared our results with those obtained for the case without a pumping model. Effect of two parameters, Reynolds number and the Rossby number on the flow evolution is studied. The first order and the leading order Ekman pumping models are in good agreement with the experimental result compared with the non-Ekman pumping model. Attention is given to the merging of two cyclonic vortices.

Numerical Computation of Unsteady Flow in a Cavity Induced by an Oscillatory External Flow (외부유동에 의한 캐버티 내의 비정상 유동에 대한 수치계산)

  • Yong kweon Suh;Park, Yoon-Hwan;Park, Jun-Gwan;Moon, Jong-Ghoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.4
    • /
    • pp.194-200
    • /
    • 1997
  • A two-dimensional shallow-water flow around a cavity driven by a sinusoidally oscillating external flow was studied numerically. A container model of "T" shape was constructed in the numerical computation for comparison with the experimental observation. The numerical computation shows that the aspect ratio of the cavity is not much affecting the overall flow pattern, and for the aspect ratio 2, the deep region of the cavity has a stagnant flow motion. At larger Reynolds number, the flow field is characterized by many small vortices which are not present in the flow visualization. The flow pattern in the external region is in good agreement with the experimentally recorded particle trajectories. It turns out that two large coherent vortices situated in the exterior region of the cavity are responsible for clockwise and counterclockwise drift motions, in large scale, of particles.particles.

  • PDF