• Title/Summary/Keyword: 에크만분출 속도

Search Result 3, Processing Time 0.03 seconds

Performance Evaluation of Nonlinear Ekman Pumping Models for a Spin-up Flow (스핀업 유동에서의 비선형 에크만 분출 모형의 성능평가)

  • 최윤환;서용권
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.273-281
    • /
    • 2001
  • In this paper, we report the experimental and numerical results on spin-up flows in a rectangular container of the aspect ratio 2. The Ekman pumping models used in the numerical study are of 1st- and 2nd- order. We also investigate flows obtained without any pumping model. In the experiment, the classical PIV method is used. It is shown that the results given by the 1st-order and 2nd-order models are in good agreement with the experimental result, whereas the non-pumping model shows a significant discrepancy.

  • PDF

Study on Fluid Flow in a Rectangular Container Subjected to a Background Rotation with a Rotational Oscillation Using PIV System (PIV를 이용한 바탕회전하에서 회전요동하는 직사각형 용기 내의 유동해석)

  • Suh, Yong-Kweon;Choi, Yoon-Hwan;Kim, Sung-Kyun;Lee, Du-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.845-851
    • /
    • 2000
  • In this paper, we show the numerical and the experimental results of two-dimensional fluid motions inside a rectangular container subjected to a background rotation added by a rotational oscillation. In the PlY experiment we apply a new algorithm, new three step search(NTSS), to the velocity calculation. In the numerical computation, the linear Ekman-pumping model was used to take the bottom friction effect into account. It was found that it well produces the experimental results at low e number.

Geostrophic Flows in a Container with a Vertical Plate (수직격판이 있는 용기 내의 지균류)

  • Choi, Yoon-Hwan;Suh, Yong-Kweon
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.124-131
    • /
    • 1999
  • In this paper, we show the numerical and experimental results of two-dimensional fluid motions inside a rectangular container with a vertical plate subjected to a background rotation added by a rotational oscillation. In the PIV experiment we apply a new algorithm, NTSS, to the velocity calculation. In the numerical computation, the linear Ekman-pumping model was used to take the bottom friction effect into account. It was found that it showed good agreement with the experimental results at low ${\epsilon}$ number.

  • PDF