• Title/Summary/Keyword: 에칠실리케이트

Search Result 4, Processing Time 0.024 seconds

Property of Concrete Surface layer Using Self-Cleaning Silicate Concrete Impregnant (Self-Cleaning 실리케이트계 표면보호제를 적용한 콘크리트 표층부의 특성)

  • Song, Hun;Lee, Jong-Kyu;Chu, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.233-239
    • /
    • 2013
  • This study is interested in manufacturing the self-cleaning silicate concrete surface impregnant including tetra ethyl ortho silicate, lithium silicate for the repair of the exposed concrete surface and the color concrete requiring the advanced function in view of the concrete appearance. The concrete surface layer change and static contact angel was tested for the review of application. The result of this study shows that the effective silicate is tetra ethyl ortho silicate and lithium silicate. The adhesion in tension is satisfied with performance requirement of KS standard but the reinforcement of concrete substrate is slight. So, The self-cleaning silicate concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

Surface Layer Change of Concrete with Concrete Impregnant (침투성 함침제에 따른 콘크리트 표층부의 개질특성)

  • Song, Hun;Shin, Hyeong-UK;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.200-201
    • /
    • 2013
  • This study is interested in manufacturing the concrete surface impregnants including tetra ethyl ortho silicate, alkali silicate for the repair of the exposed concrete and the color concrete requiring the advanced function in view of the concrete appearance. The surface layer change and porosity properties was tested for the review of application. The result of this study show that the effective silicate are tetra ethyl ortho silicate and alkali silicate t. The adhesion in tension is slightly increased but the reinforcement of concrete substrate is slight. So, the concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

  • PDF

Deterioration Assessment and Consolidation Effect of Ethylsilicate Consolidants for Samneunggyeseongakyukjonbul(Rock-carved Yukjonbul Buddha in Samneung Valley) in Namsan, Gyeongju (경주 남산 삼릉계곡 선각육존불의 훼손도 평가와 표면 강화처리제 적용 효과)

  • Kim, Jae Hwan;Lee, Myeong Seong;Lee, Jae Man;Jo, Seung Nam;Kim, Jiyoung;Lee, Chan Hee
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.405-413
    • /
    • 2012
  • This study demonstrates the consolidation effect of ethylsilicate consolidants considering material characteristics and weathering degree of Samneunggyeseongakyukjonbul(rock-carved Yukjonbul Buddha in Samneung Valley) in Namsan, Gyeongju. The buddha statue is composed of alkali feldspar granite and contains numerous sets of joint with exfoliation and granular disintegration, therefore the statue is necessary to be treated for surface strength. The laboratory and in-situ tests of consolidation effect showed more increase of ultrasonic velocity that KSE 300, a relatively highly concentrated consolidant, performed more increase of ultrasonic velocity and decrease of porosity than others after treatments in weathered granite. And the consolidated rock with OH 100 was more resistant to salt weathering. For the buddha statues, KSE 300 is more applicable to enhance surface strength because it showed higher consolidation effect for long term than OH 100 and the statues has not been weathered by salts.

Conservational Treatment and Deterioration Assessment of the Sculptured Standing Buddha Named Taehwa 4 Year in the Jincheon, Korea (진천태화4년명 마애불의 풍화훼손도 평가와 보존처리)

  • Lee, Chan Hee;Kim, Sun Duk;Han, Byeong Il;Kim, Yeong Taek;Lee, Myeong Seong
    • Journal of Conservation Science
    • /
    • v.16 s.16
    • /
    • pp.39-51
    • /
    • 2004
  • The standing Buddha named Taehwa 4 yew in the Jincheon were sculptured with rock cliff of the dark grey shale. Front of the Buddha statue shows $N40^{\circ}W$ strike with nearly vertical dip toward the back side. Rock blocks of the Buddha statue well developed with bedding and laminations whereas rock surface distributed into the various irregular discontinuities. Sculptured lines of the Buddha were uncertain because of degradation and exfoliations on the rock surface. The surface near the Buddha statue is highly contaminated with lichen and mosses, and accelerate physical and biological weathering owing to the roots of weed and bush along the fracture systems. For the conservational treatment, we treated with primary wet cleaning by air gun and secondary cleaning treatment using distilled water. Separated rock surface and fractured parts fasten and/or fill up the boundaries of the rock blocks using epoxy resin for conservation of rock properties. Some brittle surface was treatment with water repellent consolidant of ethyl silicates, and heterogeneous surface carried out color matching by acrylic pigments. Upper part of the Buddha statue dig out small ditch for rain water drainage, and near surface of the Buddha statue treat removal works for lichen, weeds and bush. The duration capacity of the Buddha constituting rocks are degraded by various weathering factors, therefore we suggest that this Buddha statue have need to do long term monitoring and synthetic conservation researches.

  • PDF