• Title/Summary/Keyword: 에어로 스파이크 핀틀 노즐

Search Result 3, Processing Time 0.017 seconds

Design Factor Analysis of Aerospike Pintle Nozzle for Increasing Thrust in Off-Design (탈설계 조건에서 추력 증대를 위한 에어로 스파이크 핀틀 노즐의 설계인자 분석 연구)

  • Kim, Jeongjin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • A design factor analysis was conducted to reduce the thrust reduction in the off-design, due to the driving of the aerospike pintle nozzle. The close (NPR 100) as well as the open (NPR 11) stroke were fixed, as under-expansion conditions. The pintle contour, pintle head radius (R), cowl angle (θ), and cowl exit length (L) were selected as design factors. The change in thrust was analyzed, using a verified numerical analysis technique. First, the pintle head radius and the length of the cowl exit had little influence on the thrust. The cowl angle changed the mass flow rate by affecting the effective nozzle throat area, and created a reverse pressure gradient at the cowl exit. As a result of applying the dual aerospike contour, it was confirmed that the thrust in the design-off increased by approximately 1.2%, compared to the reference case and by approximately 3.4% compared to the worst case.

Analysis of the Flow Characteristics of Plug Nozzle for Cold Air Test with Pintle Shape and Operating Pressure (공압시험용 플러그 노즐의 핀틀 형상 및 작동압력에 따른 유동 특성 분석)

  • Kim, Jeongjin;Oh, Seokjin;Heo, Junyoung;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.28-34
    • /
    • 2019
  • The thrust control calculation according to the operation of plug nozzle for cold air test and the analysis of the flow characteristics of the pintle shape and operation pressure are performed. The numerical computation was verified by comparing the flow structure and the coefficient of thrust with the experimental data. It was confirmed that the nozzle throat was formed at the design position on each pintle shape, and thrust control up to 1:8 was achieved only by the stroke change. Finally, although the aerospike nozzle is autonomous, it is unfavorable in the under_expansion condition, if it is designed for a very low nozzle pressure ratio.

Effect of Pintle Inflection Points on Performance of the SNECMA Modulatable Thrust Devices (핀틀의 변곡점 형상이 SNECMA 노즐목 가변 추력기의 성능에 미치는 영향)

  • Wang, Seung-Won;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.237-240
    • /
    • 2011
  • Numerical simulation was carried out to investigate the effect of pintle inflection point on the performance of the SNECMA modulatable thrust devices. Results show that the effect of inflection points in the pintle is to decrease aerodynamic load while maintaining required thrust level.

  • PDF