• Title/Summary/Keyword: 에어러솔

Search Result 69, Processing Time 0.032 seconds

Aerosol Optical and Spectral Characteristics in Yellow Sand Events on April, 1998 in Seoul. Part I: Observation (분광복사계와 일사계 관측에 의한 황사 및 에어러솔의 광학적 특성 연구)

  • Hye-Sook Park;Hyo-Sang Chung;Gyun-Myeong Bag;Hong-Ju Yoon
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.307-314
    • /
    • 1998
  • To examine the detectability of the yellow sand and/or aerosol from China crossing over the Yellow Sea within the range of OSMI wavelengths(400-900 nm), we have investigated the optical characteristics of aerosols in yellow sand events observed on April, 1998 in Seoul. The spectral reflectance(%) and aerosol optical thickness in the range of Visible(VIS) and near Infrared (NIR) wavelengths were derived from the measurements of solar radiation using the GER-2600 spectroradiometer and sunphotometer during the April, 1798. The average spectral reflectance for the yellow sand events is over 40% and higher around 14:30 than 12:00 LST, but that for clear days is about 20% both at 12:00 and 14:30 LST in the range of 500-900 nm. The aerosol optical thickness at 501 nm varied from 0.25 on very clear day to 1.01 during a so-called "yellow-sand" episode and that for 673 nm varied from 0.14 to 0.92, respectively.

The comparative analysis of KOMPSAT-3 based surface normalized difference vegetation index: Application of GeoEye data (다목적실용위성 3호의 지표 정규식생지수 산출 및 비교 분석: GeoEye 자료 활용)

  • Yeom, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2014
  • In this study, we the estimated surface normalized difference vegetation index by using the KOrea Multi-Purpose SATellite-3 (KOMPSAT-3) multi-spectral images for comparative analysis. The estimated NDVI from KOMPSAT-3 is used as for comparison with the high resolution GeoEye products. The geometry conditions for atmospheric effects are selected from meta files of KOMPSAT-3 bundle data. The used geometry conditions are consist of solar zenith angle, solar azimuth angle, viewing zenith angle, viewing azimuth angle, and date. And, Atmospheric effects such as attenuation, scattering and absorption were physically simulated from water vapor, ozone and aerosol information. Generally, although ground measurements are important for accurate information, in this study, MODIS atmospheric products are used as atmospheric constituents. The surface reflectance from radiative transfer model is utilized for estimating vegetation index. The present study, to reduce atmospheric and geometry conditions between KOMPSAT-3 and GeoEye having difference observation characteristics, data acquisition time is carefully determined for reliable vegetation spectral characteristics.

A Weekend Effect in Diurnal Temperature Range and its Association with Aerosols in Seoul (서울의 일교차 주말효과와 에어러솔과의 연관성)

  • Kim, Byung-Gon;Kim, Yoo-Jun;Eun, Seung-Hee;Choi, Min-Hyuck
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.147-157
    • /
    • 2007
  • A weekend effect has been investigated in diurnal temperature range (DTR) for Seoul in Korea using 50-year (1955 ~ 2005) surface measurements of maximum and minimum temperatures, and particle mass concentrations (PM10). The minimum temperature increases by 0.42K per decade, 2 times faster than the maximum temperature during 1955 to 2005, for rapid urbanization has occurred in Seoul. The weekend effect, which is defined as the DTR for Sunday minus the average DTR for Tuseday through Thursday, can be as large as +0.08 K for the recent 20-year period relative to 0.01K for 1955 to 1975. Especially the wintertime DTR tends to have a remarkable positive weekend effect (+0.17K), that is, larger DTR on Sunday compared to weekdays, which seems to be associated with increased maximum temperature and thus an increase in DTR. This result could be explained by relative differences in PM10 concentration between Sunday and weekdays (Tuesday through Thursday), such that PM10 concentration on Sundays appears to be systematically lower about 12% than on weekdays. The annually average weekend DTR increases by 0.2K with $10{\mu}gm^{-3}$ decrease in PM10 concentration in comparison with weekdays. The results could be possible evidence of an anthropogenic link to DTR, one of climate important indicators, since no meteorological phenomenon is supposed to occur over a 7 day cycle.

Investigation of Source Dependent Optical and Microphysical Characteristics of Aerosol Using Multi-wavelength Raman Lidar in Anmyun, Korea (다파장 라만 라이다를 이용한 발생지에 따른 안면도 지역 에어러솔의 광학적 및 미세물리적 특성)

  • Noh, Young-Min;Lee, Han-Lim;Muller, Detlef
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.554-566
    • /
    • 2010
  • We present optical and microphysical particle properties of aerosol retrieved by multi-wavelength Raman lidar at Anmyun island ($36.32^{\circ}N$, $126.19^{\circ}E$), Korea. The results present aerosol properties in various height layers of the atmospheric pollution layers observed over the Korean peninsula on eight consecutive days (27, 28, 29, 30 and 31 May, 4, 5 and 7 June) in 2005 at Anmyun island. We found anthropogenic pollution on 27, 28, and 29 May and local haze on other measurement days. The origin of the particle plumes was determined by simulations of FLEXPART. The source regions of the particles resulted in rather clear differences between the optical and microphysical properties of the pollution layers. The single-scattering albedo of anthropogenic aerosols from China ($0.91{\pm}0.01$ at 532 nm) were lower than the single-scattering albedo of local haze aerosols ($0.95{\pm}0.01$ at 532 nm). Local haze aerosols show larger effective radii of $0.24{\pm}0.02\;{\mu}m$ at relative humidity of 55~75%. The effective radii of anthropogenic aerosols are $0.20{\pm}0.2\;{\mu}m$ and $0.27\;{\mu}m$ at relative humidity of 25~50%.

The Aerosol Characteristics in Coexistence of Asian Dust and Haze during 15~17 March, 2009 in Seoul (짙은 황사와 연무가 공존한 대기의 에어러솔 특성 - 2009년 3월 15~17일 -)

  • Lee, Hae-Young;Kim, Seung-Bum;Kim, Su-Min;Song, Seung-Joo;Chun, Young-Sin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.168-180
    • /
    • 2011
  • The variation of the physicochemical properties of atmospheric aerosols in coexistence of the heavy Asian Dust and Haze observed from $15^{th}$ to $17^{th}$ March 2009 in Seoul was scrutinized through the mass and ion concentration observations and synoptic weather analysis. Although the ratio of PM1.0/PM10 was constant at 0.3 (which is typical during Asian Dust period in Korea) during the measurement period, both PM10 and PM1.0 mass concentrations were 3~6 times and 2~4 times higher than that of clear days, respectively. Water-soluble ion components accounted for 30~50% of PM10 and 50~70% of PM1.0 mass concentration. One of the secondary pollutants, $NO_3^-$ was found to be associated with $Ca^{2+}$ and $Na^+$ in coarse mode indicating that the aerosol derived from natural source was affected by anthropogenic pollutants. While the acidity of the aerosols increased in fine mode when the stagnation of weather patterns was the strongest (March $16^{th}$), the alkalinity increased in coarse mode when new air masses arrived with a southwestern wind after ending a period of stagnation (March $17^{th}$). In the selected case, SOR (Sulfur Oxidation Ratio, $nSO_4^{2-}/[nSO_4^{2-}+nSO_2]$) and NOR (Nitrogen Oxidation Ratio, $nNO_3^-/[nNO_3^-+nNO_2]$) values of ion components were higher than the general values during Asian Dust period. These results imply that dust aerosols could be mixed with pollutants transported from China even in heavy Asian Dust cases in Korea.

Measurements of the Lidar Ratio for Asian Dust and Pollution Aerosols with a Combined Raman and Back-scatter Lidar (라만-탄성 라이다를 이용한 황사 및 오염 에어러솔의 라이다 비 측정 연구)

  • Yoon, S.C.;Lee, Y.J.;Kim, S.W.;Kim, M.H.;Sugimoto, N.
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.483-494
    • /
    • 2010
  • The vertical profiles of the extinction coefficient, the backscatter coefficient, and the lidar ratio (i.e., extinction-to-backscattering ratio) for Asian dust and pollution aerosols are determined from Raman (inelastic) and elastic backscatter signals. The values of lidar ratios during two polluted days is found between 52 and 82 sr (July 22, 2009) and 40~60 sr (July 31, 2009) at 52 nm, with relatively low value of particle depolarization ratio (<5%) and high value of sun photometer-derived Angstrom exponent (> 1.2). However, lidar ratios between 25 and 40 sr are found during two Asian dust periods (October 20, 2009 and March 15, 2010), with 10~20% of particle depolarization ratio and the relatively low value of sun photometer-derived Angstrom exponent (< 0.39). The lidar ratio, particle depolarization ratio and color ratio are useful optical parameter to distinguish non-spherical coarse dust and spherical fine pollution aerosols. The comparison of aerosol extinction profiles determined from inelastic-backscatter signals by the Raman method and from elastic-backscatter signals by using the Fernald method with constant value of lidar ratio (50 sr) have shown that reliable aerosol extinction coefficients cannot be determined from elastic-backscatter signals alone, because the lidar ratio varies with aerosol types. A combined Raman and elastic backscatter lidar system can provide reliable information about the aerosol extinction profile and the aerosol lidar ratio.

Analysis of Aerosol Optical Properties in Seoul Using Skyradiometer Observation (스카이라디오미터 관측을 통한 서울 상공 에어러솔의 광학적 특성 분석)

  • Koo, Ja-Ho;Kim, Jhoon;Kim, Mi-Jin;Cho, Hi Ku;Aoki, Kazuma;Yamano, Maki
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.407-420
    • /
    • 2007
  • Optical characteristics of aerosols in Seoul are investigated from the measurements of sky radiance by Skyradiometer at Yonsei University from December 2005 to November 2006. Aerosol optical depth (AOD) shows a maximum in June due to weak ventilation and particle growth by aging process and hygroscopic effect. Single scattering albedo (SSA) and Angstrom Exponent (AE) show the lowest value in spring due to the Asian dust. It is clear that coarse mode is dominant in spring and fine mode is dominant in summer from the volume size distribution measured in this study. The explanations on the changes of aerosol loadings are provided through the correlation between AOD and AE, while the pattern of wavelength dependency related to particle size is shown through the correlation between SSA and AE. Backward trajectory analysis by HYSPLIT provides information about origin of aerosol, which allows us to classify the case according to the source region and the path distance. Although the direction of backward trajectory traces back mostly to west, coarse mode particle is dominant in the case of long pathway and fine mode particle is dominant in the case of short pathway. This discrepancy is caused by the regional difference of emitted particles.

Features on the Vertical Size Distribution of Aerosols using Ballon-borne Optical Particle Counter at Anmyeon (광학입자계수기를 이용한 안면도 연직 에어러솔 수농도 크기 분포 특성)

  • Choi, B.C.;Iwasaka, Y.;Lim, J.C.;Jeong, S.B.;Kim, Y.S.;Dmitri, T.;Nagatani, T.;Yamada, M.;Kim, S.B.;Hong, G.M.;Lee, Y.G.;Yoo, H.J.
    • Atmosphere
    • /
    • v.15 no.3
    • /
    • pp.149-153
    • /
    • 2005
  • A balloon-borne Optical Particle Counter (hereafter "OPC Sonde"), which was developed by the atmospheric research group of Nagoya University, is used for getting the information of vertical profile of particle size and concentration in Anmyeon ($36^{\circ}32^{\prime}N$ $126^{\circ}19^{\prime}E$) on 18 March 2005. A range of five different particle sizes is shown in the vertical profile of aerosol number density estimated from the OPC Sonde. It was found that small size particles have vertically larger aerosol number density than relatively big ones. For all size ranges the vertical aerosol number density shows a decreased pattern as the altitude becomes higher. The aerosol number density of $0.3{\sim}0.5{\mu}m$, $0.5{\sim}0.8{\mu}m$, $0.8{\sim}1.2{\mu}m$ size ranges at the 10km height, which is the tropopause approximately, are $1,000,000ea/m^3$, $100,000ea/m^3$, $10,000ea/m^3$ respectively. The data of OPC Sonde are also compared with the data of PM10 $\beta$-ray) and Micro Pulse Lidar which are operating at Korea Global Atmosphere Watch Observatory in Anmyeon.

A Preliminary PAM Measurement of Ambient Air at Gosan, Jeju to Study the Secondary Aerosol Forming Potential (이차 에어러솔 생성 잠재력 평가를 위한 Potential Aerosol Mass (PAM) 챔버의 제주도 고산 대기분석 적용)

  • Kang, Eun-Ha;Brune, William H.;Kim, Sang-Woo;Yoon, Soon-Chang;Jung, Mu-Hyun;Lee, Mee-Hye
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.534-544
    • /
    • 2011
  • The secondary aerosol forming potential of ambient air was first measured with the Potential Aerosol Mass(PAM) chamber at Gosan supersite on Jeju island from October 22 to November 5, 2010. PAM chamber is a small flowthrough photo-oxidation chamber with extremely high OH and $O_3$ levels. The OH exposure in the PAM chamber was $(2{\pm}0.4){\times}10^{11}{\sim}(6{\pm}1.2){\times}10^{11}$ molecules $cm^{-3}$ s and was similar to 2 to 5 days of aging in the atmosphere. By periodically turning on and off UV lamps in the PAM chamber, ambient aerosol and newly formed aerosol (e.g. called as PAM aerosol) was alternately measured. Aerosol number and mass concentration in the range of 10~487 nm in diameter was measured by SMPS 3034. With UV lamps on, the nucleation mode particles smaller than 50 nm in diameters were formed. Their number concentration was greater than 105 $cm^{-3}$, leading to increase in aerosol mass by 0~8 ${\mu}gm^{-3}$. The variations of PAM and ambient aerosols were greatly dependent on characteristics of air masses such as precursor concentrations and degree of aging. This preliminary results suggests that PAM chamber is useful to assess the aerosol formation potential of air mass and its impact on the air quality. The further analysis of data with gaseous and particulate measurements will be done.

The Physio-Chemical Characteristics of Aerosol in Urban Area During Snowfall (강설시 도심지역 에어러솔의 물리.화학적 특성)

  • 김민수;이동인;유철환
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.201-208
    • /
    • 2001
  • To investigate the physio-chemical components and properties of aerosol particles in urban area sampling of aerosol particles was carried out in the campus of Hokkaido University, Sapporo, Japan, during snowfall. Aerosol particles were collected on millipore filter papers using a low volume air sampler. Their shapes, sizes and chemical components were analyzed by a SEM(Scanning Electron Microscope) and an EDX(Energy Dispersive X-ray). As a results, ice crystals of dendrite and column types were predominantly shown at mature and developing stage of snowfall intensity. The denerite and sector plate types of ice crystals were mainly originated from the sea but column types were come from soil. Scavenging effect by snowfall was greatly also shown at dendrite type ice crystals that embryo was fully developd. Al, Si elements were shown at high frequencies as compared with others. Na, Cl components were especially shown at high frequencies under the sea-breeze wind during snowfall. Anthropogenic aerosol particles had shown with irregular shapes and sizes, relatively. Mainly 3-7$\mu$m aerosol particles were abundant and coarse particles also could be seen during snowfall. Ca, Zn, Fe components mainly caused by spike tires from vehicles in winter season were dominant before snowfall, however the element S mainly caused by human activity was rich after snowfall. The pH values of snow in Sapporo city were higher than those at coastal area. The concentration of chemical components in aerosol particles was also affected by surface winds. Aerosol particles in urban area, Sapporo were mainly affected by human activities like vehicles and combustion with wind system. And their types were related with snowfall intensity.

  • PDF