• Title/Summary/Keyword: 에어공구

Search Result 10, Processing Time 0.03 seconds

Performance Analysis of Assembly Tools for Modular House (모듈러주택 조립을 위한 조립공구의 성능분석)

  • Kim, Tae-Yeong;Kim, Seok
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.143-150
    • /
    • 2016
  • Modular house is built by assembling various joints. Module assembly in the stage of on-site installation is very important process, because assembly process directly affects the structural stability and the quality. However, manual tools and electric-powered tools have a problem in that assembly productivity and quality are reduced during long-time usage. Although pneumatic assembly tools for modular house have been developed, but empirical analysis to compare and evaluate the performance of tools has not been sufficient. This study compares and analyzes the assembly quality and productivity by applying existing assembly tools and new pneumatic tools to the field. The analysis results show that pneumatic assembly tools are more excellent in terms of assembly productivity and quality.

Study on measuring the low torque on an air tool operating at 100,000 RPM class (100,000 RPM급으로 회전하는 에어공구에서의 저토오크 측정에 관한연구)

  • Kim, Eun-Jong;Cho, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2018-2023
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM at the unloaded state with the low torque. An experimental apparatus is developed as the power absorption type dynamometer. Inlet static pressure, flow rate, RPM and force are measured simultaneously. Torque, output power and specific output power are obtained. Those experimental results are compared with the experimental results obtained on a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000RPM. In order to use the commercial dynamometer, a reduction gear is applied to the shaft of dynamometer. Torque and power obtained on the commercial dynamometer show 50% lower than those obtained on a power absorption type dynamometer, because the inertia force is added to the air tool rotor for the braking system. Moreover, the starting RPM on the commercial dynamometer is less than 40,000RPM. From the compared results, they show that the power absorption type dynamometer should be applied for measuring the performance of an air tool operating at low torque and high RPM.

  • PDF

Study on Measuring the Performance of an Air Tool Operating at 100,000 RPM Class (100,000 RPM급으로 회전하는 에어공구의 성능측정에 관한 연구)

  • Cho, Soo-Yong;Kim, Eun-Jong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM in an unloaded state with very low torque. A 551 kPa in gauge pressure is supply to the inlet of an air tool. An experimental apparatus is developed as a friction type dynamometer. Inlet total pressure, air flow rate, rotational speed and operating force are measured simultaneously. Torque, output power and specific output power are obtained with different rotational speeds. Those are compared with the experimental results which were obtained by a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000 RPM. In order to reduce the rotational speed, a reduction gear is applied between the air tool and the commercial dynamometer. Torque and power obtained by the commercial dynamometer show $55\%$ lower than those obtained by the developed friction type dynamometer, because the mass is added to the rotor of air tool for the braking system of the commercial dynamometer and power loss is generated by the reduction gear. From the compared results, the friction type dynamometer should be applied for measuring the performance of the air tool operating at low torque and high RPM.

Evaluation Tool Life and Cutting Characteristics of Carbide Hob TiAlN Coating Surface Polishing Using Aero Lap Polishing Technology and Multi-con (Multi-con와 ALPT을 활용한 TiAlN코팅층 표면연마 초경호브의 절삭특성 및 공구수명 평가)

  • Cheon, Jong-Pil;Pyoun, Young-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.848-854
    • /
    • 2012
  • SCM420 steel cutting gear to improve the durability is quenched. When quenching, increases surface hardness, a change of the physical properties and machinability or fall. This study, using a solid carbide hobs skiving hobbing gear cutting finishing. And cutting tool solid carbide TiAlN coating hove when TiAlN coating on the surface of multi-con polishing hob conducted aero lap nano polishing for each cutting. Experimental results conducted aero lap nano coating on the surface polishing tool machinability was excellent. And aero lap nano polishing tool results were reduced 2.5 times the tool wear compared to TiAlN coated tools. Excellent results were 1.42 times longer tool life.

Turning of Hardened Materials Using the Air-oil Cooling System (에어-오일 냉각방식에 의한 고경도재료의 선삭)

  • Chung, Bo Gu;Ko, Tae Jo;Kim, Hee Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.73-81
    • /
    • 1997
  • The hard turning process defined as a single point turning of materials harder than $H_{R}$C 58 differs from conventional turning because of hardness of the work materials and cutting toos needed in the process. In hard turning, tool life is very short, of the order of a few minutes, during which the cutting tool is subjected to the extremes of stress and temperature. In this regard, it is well known that CBN tool is proper for this process in spite of expensive cost. In this research, we studied the feasibility of the use of the low cost cutting tool such as a aTiN coated tool. To this end, a new cooling system was designed with an air-oil method for reducing tool temperature, which is based on the principle of air vortex flow. That is, the outlet temperature of the air becomes aver 20 .deg. C lower than atmosphere temperature by entering pressurized air of 5kgf/c $m^{2}$ into the inlet. This cooled air ejected to the top of the cutting tool lowered tool temperature, which reduced the wear of a TiN coated tool by the 30% of CBN tool life with respect to the same cutting length.h.

  • PDF

마이크로 선반에서의 절삭성 평가

  • 김재건;정종운;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.256-256
    • /
    • 2004
  • Micro/Meso 기계적 가공은 기존 MEMS 공정에서 제작할 수 없었던 높은 세장비(aspect ratio)를 가지는 제품을 가공할 수 있을 뿐만 아니라 보다 높은 가공 정밀도를 획득할 수 있다. 따라서, 미소 부품에 대한 마이크로/매소 단위의 미세 절삭 가공을 위해서는 공간적 측면과 에너지 소비, 정밀도 측면에서 효율적인 시스템을 구성하기 위해서 마이크로 머시닝 전용 기계가 요구된다. 이에 본 연구에서는 '마이크로 팩토리' 의 기본 공작기계인 마이크로 선반을 개발하여 초정밀 미소 절삭에 대한 연구를 진행 중에 있다.(중략)

  • PDF

Development of the Micro Tool Dynamometer for Micro Machining (미세가공을 위한 마이크로 공구동력계 개발)

  • Kwon D.H.;Hwang I.O.;Kang M.C.;Kim J.H.;Kim J.S.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.217-218
    • /
    • 2006
  • This paper presents an investigation on the characteristics for new micro tool dynamometer by using the ultrahigh-speed air turbine spindle. Recently, the ultrahigh-speed micro flat endmilling has been investigated actively due to request of accuracy improvement and productivity of die and mould manufacturing. To perform efficient ultrahigh-speed micro flat endmilling, evaluation of ultrahigh-speed machinability must be studied preferentially and it can be identified by investigation of cutting force. The cutting forces in ultrahigh-speed micro flat endmilling can be measured by micro tool dynamometer. But general dynamometer has low natural frequency and so is improper for measuring very high frequency cutting forces in ultrahigh-speed micro flat endmilling. In this study, the micro tool dynamometer which has very high natural frequency is newly designed.

  • PDF

An Experimental Study of Partial Admitted Flow Characteristics on a Small Axial-Type Turbine (소형축류형 터빈에서의 부분분사 유동특성에 관한 연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Choi, Sang-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.28-37
    • /
    • 2004
  • An experimental study is conducted to investigate flow characteristics on a small axial-type turbine which is applied as the rotating part of air tools. It operates in a partial admission due to consumption restriction of the high pressure air. In this operating condition, it is necessary to understand flow characteristics for obtaining the high specific output power. Tested turbine consists of two stages and the mean radius of flow passage is less than 10mm. A 6 bar pressure air is used to operate the turbine. The experimental results show that flow angles depend on the measuring location along the circumferential direction, but its discrepancy is alleviated along the axial direction. Absolute flow velocities show three times difference according to the measuring location at the exit of the first rotor due to the partial admission, but they show similar value at the exit of the second rotor by the velocity diffusion. From the measured flow angles and velocities, a ratio of output power obtained by the first and second rotor is estimated. It shows that the output power obtained by the second rotor is about $11\%$ to that by the first rotor at 60,000 RPM. It is effective therefore to improve the first rotor for increasing the turbine output power.

A Field Construction of PSC Girders with 60MPa Cast-in-Place High-Strength Concrete (60MPa급 현장 타설 고강도 PSC 거더의 시험 시공)

  • Min, Kyung-Hwan;Yang, Jun-Mo;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.405-408
    • /
    • 2008
  • The most effective factors that improve sections and elongate spans of the prestressed concrete girders are shapes of sections and strengths of concretes, and the concrete strength is more influenced to enhance the allowable tensile strength on top and bottom fibers than increasing of flexural strength of girders. In this study, 60 MPa high-strength prestressed concretes were constructed at the Wonsoo Bridge where in the 1st section of expanding constructions of the Nonsan to Junjoo Expressway, the high-strength concrete was placed on the eight- 35 meters simple span IPC girders of four lanes of Nonsan direction. During casting of girder concretes, quality controls were carried out with continuing controls of surface moistures and corrections of the unit water using the air-meter methods right after batching. It was confirmed that compressive strengths of girder concretes ensure the target strength and the heat of hydrations of girder concrete were measured. Though using same materials and constructing methods, there're a wide range of strengths of each girder, so, when high-strength concretes cast in the place hereafter, a countermove should be prepared.

  • PDF

Hand-Arm Vibration and Noise Levels of Double-Hammer Type and Oil-Pulse Type Impact Wrenches in Automobile Assembly Lines (자동차 조립라인에서 이중-헴머형(Double-hammer type) 임펙트 렌치와 오일-펄스형(Oil-pulse type)임펙트 렌치 에어공구의 국소진동가속도 및 소음수준)

  • Jeung, Jae-Yeal;Kim, Jung-Man
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.147-159
    • /
    • 1995
  • This study was conducted to introduce fundamental data of hand-arm vibration and noise exposure levels with impact wrenches(double-hammer impact wrenches and oil-pulse impact wrenches) used in automobile assembly lines considering the process variables and tool variables. In studing, products per day, required time screwing the bolts or nuts per bolts or nut were considered as process variables, and capacity of bolts or nuts, air consumptions per minute, tool weights, RPM were considered as tool variables. Hand-arm vibration levels of 3 axis in each hand were measured using the instruments compling with ISO/DIS 5349 and noise levels were measured using a noise logging dosimeter. The results were as follows : 1. Required time to screwing the bolt or nut by oil-pulse impact wrenches is shorter than double-hammer impact wrenches but total daily exposure time of oil-pulse impact wrenches was higher than double-hammer impact wrenches because the number of bolts or nuts per cycle was many. 2. Oil-pulse impact wrenches have been used to screwing the large bolt or nut in comparing with double-hammer impact wrenches and required time to screwing the bolts or nuts were shorter than double-hammer impact wrenches because oil-pulse impact wrenches were using high RPM and large air consumption per minute. Noise level of oil-pulse impact wrenches was 8 dB(A) lower than double-hammer impact wrenches. 3. Dominant hand-arm vibration levels of double-hammer impact wrenches in each hand were $8.24m/sec^2$ of Zh axis in right hand and $9.60m/sec^2$ of Xh axis in left hand. Dominant hand-arm vibration level of oil-pulse impact wrenches in each hand was $2.59m/sec^2$ of Xh axis in right hand and $3.23m/sec^2$ of Yh axis in left hand. 4. In double-hammer impact wrenches, corresponding hand-arm vibration levels of Xh, Yh, Zh axis in left hand were higher than hand-arm vibration levels of right hand in 3 axis. In oil-pulse impact wrenches, Xh axis of right, Yh axis of left, Zh axis of left were higher than the corresponding hand-arm vibration levels of Xh, Yh, Zh axis in right and left hand. 5. Correlation coefficients among Xh, Yh. Zh axis of right and left hand hand-arm vibration levels in double-hammer impact wrenches and oil-pulse impact wrenches were commonly high in Yh axis and correlation coefficients of Yh axis in double-hammer impact wrenches and oil-pulse impact wrenches were 0.76 and 0.86,respectively. 6. As a measure repetitiveness, plotting total daily exposure time with the number of bolts or nut per cycle, direct correlation was shown between repetitiveness and hand-arn vibration exposure, and correlation coefficient between the number of bolts or nut per cycle and total daily exposure time in double-hammer impact wrenches, oil-pulse impact wrenches were 0.84 and 0.50, respectively. 7. Considering the total acceleration level and tool variables in double-hammer impact wrenches and oil-pulse impact wrenches, air consumption in right hand, and bolt or nut capacity in left hand were commonly the variable that explainability was high. Considering the noise and tool variables in double-hammer impact wrenches and oil-pulse impact wrenches, air consumption per minute was commonly the variable that explainability was high.

  • PDF