• Title/Summary/Keyword: 에렉트럼

Search Result 39, Processing Time 0.029 seconds

Mode of Occurrence and Compositional Variation of Electrum from the Dunjeon and Baegjeon Gold Deposits (둔전(屯田) 및 백전광상(栢田鑛床)에서 산출(産出)되는 에렉트럼의 산출상태(産出狀態)와 조성변화(組成變化))

  • Lee, Chan Hee;Park, Hee-In
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.94-104
    • /
    • 1993
  • The compositional variation of electrums from gold-silver and antimony deposits in the Dunjeon Baegjeon mining area, range from 22.6 to 69.5 atom% of Ag. Ag contents in electrums vary with paragenetic sequences and associated minerals. Ag contents increase from core to margin in a single grain. Compositional range of electrums from the North ore deposits of the Dunjeon gold mine are from 22.6 to 29.5 atom% of Ag. Electrums contain Cu(0.40 to 0.55 atom%) and Bi(0.35 to 0.67 atom%). Composition of electrums from the South ore deposits of the Dunjeon gold mine vasies from 33.6 to 69.5 atom% of Ag. Cu and As contents in electrums range from 0.20 to 1.92 and from 0.70 to 1.90 atom%, respectively. As the content of Ag in electrums increase, the contents of Bi and As in electrums increase but that of Cu decrease. Electrums of the Baegjeon gold deposits contain 35.6 to 63.5 atom% of Ag, suggesting that Au contents in electrums associated with base metal sulfied be higher than those associate with Ag-minerals. Ag/Au rations in electrums increase with decreasing temperature, salinity and $fs_2$ of the mineralizing solution.

  • PDF

Mode of Occurrence and Chemical Composition of Electrums from the Gubong Gold-Silver Deposits, Republic of Korea (구봉 금-은광상에서 산출되는 에렉트럼의 산출상태와 화학조성)

  • 유봉철;최선규;이현구
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.191-201
    • /
    • 2002
  • The Gubong gold-silver deposits if gold-silver-bearing hydrothermal massive quartz veins which were filled the fractures along fault shear (NE, NW) zones within Precambrian banded or granitic gneiss of Gyeonggi massif. Ore mineralization of this deposits is contained within a single stage of quartz vein which was formed by multiple episodes of fracturing and healing. Ore minerals are comported mainly of arsenopyrite, pyrite, sphalerite, chalcopyrite, galena with minor amounts of pyrrhotite, marcasite and electrum. The frequency and volume percentages of electrum associated with ore minerals from this deposits are recognized as follows; 44.5% and 54.3% with arsenopyrite, 24.3% and 33.8% with quartz, 12.6% and 0.1% with pyrite, 11.0% and 4.8% with galena, 5.0% and 7.0% with sphalerite and 2.5% and 0.02% with chalcopyrite, respectively. They show irregular (41.6%), subround (34.7%), elongate (17.0%) and granular (6.6%) shapes, respectively. Their grain size ranges from 2 to 150 um, but 90.9 percent of the grains are below 30 um. The chemical composition of electrums ranges from 26.39 to 72.51 Au atomic %. These composition (Au atomic %) on the basis of associated minerals are from 44.97 to 71.75 with arsenopyrite, pyrite, sphalerite and quartz, from 44.37 to 72.51 with quartz, from 35.40 to 41.01 with sphalerite and chalcopyrite, from 26.39 to 54.84 with pyrite, chalcopyrite, quartz and galena, from 28.49 to 53.28 with galena, respectively. We suggest that optimum recovery of gold would be obtained with reference to these results.

Genesis of Bonanza-style Ores in Uichang Area, Changwon City: Geochemical Interpretation by Reaction Path Modeling (창원시 의창지역 보난자형 금광상 성인 : 반응경로 모델링에 의한 지구화학적 해석)

  • Lee, Seung-han;No, Sang-gun;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.85-96
    • /
    • 2017
  • Gold mineralization of Samjeong and Yongjang gold mines in Uichang area shows characteristics of Bonanza-type gold deposits. Ores are mainly developed along the contact parts between quartz vein and arkosic sandstone beds(Fe-rich bed) in sedimentary rock. Electrum, silver sulfide and sulfate minerals are mainly in the ores. On the other hand, gold mineralization is less developed in cherty rock and andesitic rock than arkosic sandstone. The study highlights characteristics of gold precipitation in the deposit on the basis of numerical modelling of the reactions between the assumed hydrothermal ore fluids with multicomponent heterogeneous equilibrium calculations. Aqueous species, gases and minerals, containing electrum are included in the calculations. The reaction result between hydrothermal ore fluids and arkosic sandstone show that pH increasing in the ore-forming fluid would trigger precipitation of quartz, chlorite, sericite, chalcopyrite, galena, pyrite, electrum, actinolite and feldspar. The numerical modelling also illustrates the drastic increase of pH and desulfidation lead to precipitation of electrum. Ag/Au ratios in the ore vary with pH conditions and subsequently precipitation of silver-bearing sulfides such as acanthite and polybasite. The modelling of the reaction between andesitic rock and ore-forming fluid shows that mineral assemblages of the case are analogous to ones of the reaction between arkosic sandstone and fluid except the latter has little portion of electrum. The abovementioned modelling results suggest that gold-silver mineralization is bounded by host rocks at the study area.

Gold and Silver Mineralization of the Soowang Ore Deposits in Muju, Korea (무주 수왕광상의 금-은 광화작용)

  • Park, Hee-In;Youn, Seok-Tai
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.484-494
    • /
    • 2004
  • The Soowang Au-Ag deposits occur as quartz veins which filled fissures in middle Cretaceous porphyritic granite an/or gneiss of the Precambrian Sobaegsan gneiss complex. The paragenetic studies suggest that vein filling can be divided into four identifiable stages (I to IV). Stage I is the main sulfide stage, characterized by the deposition of base-metal sulfide and minor electrum. Stage II is the electrum stage, whereas stage III represents a period of the deposition of silver-bearing sulfosalts and minor electrum. Stage IV is the post ore stage. Mineralogical and fluid inclusion evidences suggest that mineralization of the Soowang deposits were deposited by the cooling of the fluids from initial high temperatures 300$^{\circ}C$ to later low temperatures 150$^{\circ}C$. The salinity of the fluids were moderate, ranging from 10.4wt.% equivalent NaCl in sphalerite to 3.1wt.% equivalent NaCl in barite. The gold-silver mineralization of the Soowang mine occurred at temperatures between 140 and 250$^{\circ}C$ from fluids with log $fs_2$ from -12 to -18 atm. A consideration of the pressure regime during ore deposition, based on the fluid inclusion evidence of boiling, suggests lithostatic pressure of less than 210 bars. This pressure condition indicates that vein system of the Soowang deposit formed at depth around 800 m below the surface at the time of gold-silver mineralization.

Genetic Environments of Au-Ag-bearing Gasado Hydrothermal Vein Deposit (함 금-은 가사도 열수 맥상광상의 성인)

  • Ko, Youngjin;Kim, Chang Seong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • The Gasado Au-Ag deposit is located within the south-western margin of the Hanam-Jindo basin. The geology of the Gasado is composed of the late Cretaceous volcaniclastic sedimentary rocks and acidic or intermediate igneous rocks. Within the deposit area, there are a number of hydrothermal quartz and calcite veins, formed by narrow open space filling along subparallel fractures in the late Cretaceous volcaniclastic sedimentary rock. Vein mineralization at the Gasado is characterized by several textural varieties such as chalcedony, drusy, comb, bladed, crustiform and colloform. The textures have been used as exploring indicators of the epithermal deposit. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) considering major tectonic fracturing event. Stage I, at which the precipitation of Au-Ag bearing minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite and pyrrhotite with minor chalcopyrite, sphalerite and electrum; middle, characterized by introduction of electrum and base-metal sulfides with minor argentite; late, marked by argentite and native silver. Au-Ag-bearing mineralization at the Gasado deposit occurred under the condition between initial high temperatures (≥290℃) and later lower temperatures (≤130℃). Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur (≈10-10.1 to ≤10-18.5atm) by evolution of the Gasado hydrothermal system with increasing paragenetic time. The Gasado deposit may represents an epithermal gold-silver deposit which was formed near paleo-surface.

Hydrothermal Alteration and Its Cenetic Implication in the Casado Volcanic-hosted Epithermal Cold-Silver Deposit: Use in Exploration (가사도 화산성 천열수 금은광상의 열수변질대 분포 및 성인: 탐사에의 적용)

  • 김창성;최선규;최상훈;이인우
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.205-220
    • /
    • 2002
  • The gold-silver deposits in the Casado district were formed in the sheeted and stockwork quartz veins which fill the fault fractures in volcanic rocks. K-Ar dating of alteration sericite (about 70 Ma) indicates a Late Cretaceous age for ore mineralization. These veins are composed of quartz, adularia, carbonate, and minor of pyrite, sphalerite, chalcopyrite, galena, Ag-sulfosalts (argentite, pearceite, Ag-As-Sb-S system), and electrum. These veins are characterized by chalcedonic, comb, crustiform and feathery textures. Based on the hydrothermally altered mineral assemblages, regional alteration zoning associated with mineralization in the Gasado district is defined as four zones; advanced argillic (kaolin mineral-alunite-quartz), argillic (kaolin mineral-quartz), phyllic (quartz-sericite-pyrite) and propylitic (chlorite-carbonate-quartz-feldspar-pyroxene) zone. Phyllic and propylitic zones is distributed over the study area. However, advanced argillic zone is restricted to the shallow surface of the Lighthouse vein. Compositions of electrum ranges from 14.6 to 53.7 atomic % Au, and the depositional condition for mineralization are estimated in terms of both temperature and sulfur fugacity: T=245。$~285^{\circ}C$, logf $s_2$=$10^{-10}$ ~ $10^{-12}$ Fluid inclusion and stable isotope data show that the auriferous fluids were mixed with cool and dilute (158。~253$^{\circ}C$ and 0.9~3.4 equiv. wt. % NaCl) meteoric water ($\delta^{18}$ $O_{water}$=-10.1~8.0$\textperthousand$, $\delta$D=-68~64$\textperthousand$). These results harmonize with the hot-spring type of the low-sulfidation epithermal deposit model, and strongly suggest that Au-Ag mineralization in the Gasado district was formed in low-sulfidation alteration type environment at near paleo-surface.

Gold Mineralization of the Youngbogari Mine, Youngdong Area (영동지역 영보가리 광산의 금광화 작용)

  • Heo, Chul-Ho;Chi, Se-Jung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.115-124
    • /
    • 2007
  • Electrum-sulfide mineralization of the Youngbogari mine area occurred in two stages of massive quartz veins that fill the fractures along the fault/shear zones in the Precambrian gneiss. Ore mineralogy is simple, consisting of arsenopyrite $(31.4{\sim}33.4atom.%As)$, pyrite, sphalerite $(4.1{\sim}17.6mole%FeS)$, galena, chalcopyrite, argentite, and electrum. Electrum $(60.3{\sim}87.6atom.%Ag)$ is associated with galena, chalcopyrite and late sphalerite infilling the fractures in quartz and sulfides. Fluid inclusion data show that ore mineralization was formed from $H_2O-CO_2-CH_4-NaCl$ fluids $(X_{CO2+CH4}=0.0\;to\;0.2)$ with low salinities (0 to 10wt.% eq. NaCl) at temperatures between $200^{\circ}\;and\;370^{\circ}C$. Gold-silver mineralization occurred later than the base-metal sulfide deposition, at temperatures near $250^{\circ}C$ and was probably a result of cooling and decreasing sulfur fugacity caused by sulfide precipitation and/or $H_2S$ loss through fluid unmixing.

Occurrence of Electrum from the Namseong Gold Mine (남성(南星) 금광산산(金鑛山産) 에렉트럼의 산상(産狀))

  • Lee, Hyun Koo;Kim, Sang Jung;Choi, Seon Gyu
    • Economic and Environmental Geology
    • /
    • v.20 no.4
    • /
    • pp.223-234
    • /
    • 1987
  • This paper describes the mode of occurrence and mineralogical properties of electrum from the Namseong Gold-Silver deposits, for the purpose of obtaining data on the characteristics of the ore deposits and the behavior of gold and silver during the mineralization. The gangue minerals are quartz, calcite, fluorite. Ore minerals are mainly composed of pyrite, sphalerite, chalcopyrite and galena with minor amount of argentite, electrum, pyrargyrite, native silver and unidenfied mineral(Cu-Fe-Ag-S series). Three stage of mineralization recognized are, from early to later, (I) pyrite-electrum stage (II) sphalerite-chalcopyrite-galena-argentite-electrum stage (III) sulfosalts stage. The filling temperature of fluid inclusions in quartz ranges from $225^{\circ}$ to $335^{\circ}C$. The value of sulfur fugacity estimated by means of electrum-tarnish method ranges from $10^{-11.5}$ to $10^{-14}$ atm. The compositional heterogeneity within a single grain with respect to gold concentration is common in the Namseong electrums Chemical composition of electrum ranges generally between 25~45 atom% Au. Its gold content decreases in late stages of mineralization.

  • PDF

Fluid Inclusion and Stable Isotope Geochemistry of the Yugeum Hydrothermal Gold Deposit in Youngduk, Korea (영덕 유금 열수 금광상에 대한 유체포유물과 안정동위원소 연구)

  • Kim, Sang-Woo;Lee, In-Sung;Shin, Dong-Bok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • The Yugeum deposit in Youngduk in Gyungsangbuk-do is emplaced in the Cretaceous granitoids located in the Northeastem Gyeongsang Basin. Gold-bearing quartz veins filling the fracture with a direction of $N19^{\circ}{\sim}38^{\circ}W$ are most abundantly distributed within the Younghae granodiorite body. The formation of quartz veins can be classified into three main stages: barren quartz stage, auriferous quartz vein stage, and finally the extensive sulfide mineralization stage. Various sulfide minerals such as pyrite, chalcopyrite, galena, sphalerite, and arsenopyrite were precipitated during the hydrothermal gold mineralization process. Gold commonly occurs as fine-grained electrum in sulfides with high Au concentration (up to 93 wt%) compared to Ag. During the early gold mineralization stage, the temperature and pressure of the fluids are in the range of $220{\sim}250^{\circ}C$ and 730~1800 bar, and the oxygen fugacity is between $10^{-27}$ and $10^{-31.7}$ atm. On the other hand, the fluids of the late stage mineralization are characterized by temperature of $290{\sim}350^{\circ}C$ and pressure of 206~472 bar, and the oxygen fugacity is in the range of $10^{-26.3}{\sim}10^{-28.6}$ atm. The sulfur isotope compositions of sulfide minerals are in the range of $0.2{\sim}4.2^{\circ}/_{\circ\circ}$, while the ${\delta}^{34}SH_2S$ values range from 1.0 to $3.7^{\circ}/_{\circ\circ}$. The Ag/Au atomic ratios of electrum ranges from 0.15 to 1.10, and Au content is higher than Ag in most electrum. During the main gold mineralization stage at the relatively high temperature condition and with pH from 4.5 to 5.5, the stability of ${AuCl_2}^-$ increased while the stability of ${Au(HS)_2}^-$ decreased. Considering the pressure estimated in this deposit, the temperature of the ore fluid reached higher than $350^{\circ}C$ and ${AuCl_2}^-$ became an important species for the gold transportation. As mineralization proceeded with decreasing temperature and increasing pH and $f_{o2}$, the precipitation of sulfide minerals and accompanying electrum occurred.