• Title/Summary/Keyword: 에러 복원 코딩

Search Result 15, Processing Time 0.027 seconds

Error Resilience Coding Techniques for Mobile Videotelephony (모바일 화상통신을 위한 오류강인 부호화 기법)

  • Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.303-310
    • /
    • 2007
  • Compressed video bitstreams are intended for real-time transmission over communication networks. Because video compression algorithms eliminate the temporal, spatial, and statistical redundancies, the coded video bitstreams are very sensitive to transmission errors. We propose an error resilient video coding technique to limit the effect of error propagation in low bit-rate video coding. The success of error resilient coding techniques relies on how accurately the transmission errors can be detected. To detect the transmission error, we propose a very simple error detection technique based on data hiding Next, we conceal the corrupted MB data using intra MB refresh and motion compensation with the estimated motion vector and compare the simulation results. This method will be useful in video communication in error Prone environment such as WCDMA networks.

Error-Resilient Video Transmission Techniques over Unreliable Networks (비 신뢰성 네트워크에서 에러를 극복하는 비디오 전송 기법)

  • 노경택
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.3
    • /
    • pp.50-55
    • /
    • 2001
  • We review error resilience techniques for real-time video transport over unreliable networks. For error control on the source coding level, each decoder has to make provisions for error detection, resynchronization. and error concealment. and we review techniques suitable for that purpose. Further, techniques are discussed for intelligent processing of acknowledgment information by the coding control to adapt the source coder to the channel. We review and compare error tracking, error confinement. and reference picture selection techniques for channel-adaptive source coding. We review how feedback-based source codings are related with the precompressed video stored on a media server

  • PDF

A Study On Error Localization Techniques for MPEG-4 Error Resilience (MPEG-4에서 오류 강인성을 위한 오류전파 제한방법에 대한 연구)

  • 이상조;서덕영;임영권;이명호
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.243-248
    • /
    • 1999
  • MPEG-4에서 오류강인성(Error Resilience)를 위한 한 방법으로 Resynchronization Markers(RM)을 사용한다. 한 프레임이 시작될 때 StartCode를 사용하여 동기를 맞추고 몇 개의MacroBlock을 encoding한 후 일정한 비트수(Threshold 값)가 지나면 재동기 마커 표시하여 재동기를 한다. 이렇게 하므로서 한 프레임 내에서 어떤 부분에 에러가 발생하더라도 그 에러가 속해있는 비디오패킷(재동기 마커와 재동기 마커사이의 Data)만을 버리거나 RVLC(ReversibleVariable Length Codes)를 사용하여 Data를 복원할 수 있다. 그러나 만약 재동기 마커에 에러가 발생하거나 에러의 전파로 인하여 재동기 마커를 인식 못한다면 두 개 이상의 패킷이 손실되거나RVLC를 사용한 데이터 복원을 할 수 없다. 본 논문에서는 이를 막기위해 디코딩 전에 Prescan을 통해서 재동기 마커의 위치를 탐지하고 에러가 생긴 재동기 마커를 복원하는 방법을 제안하였다. 그리고 bitrate에 따른 MB(MacroBlock)의 크기와 비디오 패킷 크기(재동기 마커와 재동기 마커간의 거리)를 분석하여 재동기 마커를 찾는 루틴에 적용하였다.

  • PDF

A Study of Video Coding Based on a Morphological Representation of Wavelet Data (웨이블릿 데이터의 형태적 표현을 적용한 동영상 코딩에 관한 연구)

  • 김혜경;오해석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.541-543
    • /
    • 2000
  • 영역의 수와 윤곽선의 길이는 세그멘테이션 기반의 움직임 보상된 비디오 코딩에서 두 가지의 기본적인 제약사항이다. 이 논문에서 제안하는 코딩 스킴은 영역의 수를 축소하는 것에 초점을 맞추고, 윤곽성 코딩, 그리고 치환된 프레임 차이(DFD)의 압축에 초점을 맞춘다. 제안된 스킴의 가장 중요한 특징 중의 하나는 형태적인 필터를 기반으로 하는 spatio-temporal 단순성 알고리즘이고, 그것들과 함께 이미지는 작은 수의 영역으로 나누어질 수 있다. 이 스킴의 매우 중요한 특성은 세그멘테이션 맵 샘플링 기법으로, 그것은 윤곽선 길이를 매우 작은 복원 에러에 비례하여 약 50%까지 줄인다. 실험적인 결과는, 높은 압축 비율에 대하여 매우 작은 코딩 에러를 보여주었다.

  • PDF

CNN-based In-loop Filter on TU Block (TU 블록 크기에 따른 CNN기반 인루프필터)

  • Kim, Yang-Woo;Jeong, Seyoon;Cho, Seunghyun;Lee, Yung-Lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.15-17
    • /
    • 2018
  • VVC(Versatile Video Coding)는 입력된 영상을 CTU(Coding Tree Unit) 단위로 분할하여 코딩하며, 이를 다시 QTBTT(Quadtree plus binary tree and triple tree)로 분할하고, TU(Transform Unit)도 이와 같은 단위로 분할된다. 따라서 TU의 크기는 $4{\times}4$, $4{\times}8$, $4{\times}16$, $4{\times}32$, $8{\times}4$, $16{\times}4$, $32{\times}4$, $8{\times}8$, $8{\times}16$, $8{\times}32$, $16{\times}8$, $32{\times}8$, $16{\times}16$, $16{\times}32$, $32{\times}16$, $32{\times}32$, $64{\times}64$의 17가지 종류가 있다. 기존의 VVC 참조 Software인 VTM에서는 디블록킹필터와 SAO(Sample Adaptive Offset)로 이루어진 인루프필터를 이용하여 에러를 복원하는데, 본 논문은 TU 크기에 따라서 원본블록과 복원블록의 차이(에러)가 통계적으로 다름을 이용하여 서로 다른 CNN(Convolution Neural Network)을 구축하고 에러를 복원하는 방법으로 VTM의 인루프 필터를 대체한다. 복원영상의 에러를 감소시키기 위하여 TU 블록크기에 따라 DenseNet의 Dense Block기반 CNN을 구성하고, Hyper Parameter와 복잡도의 감소를 위해 네트워크 간에 일부 가중치를 공유하는 모양의 Network를 구성하였다.

  • PDF

Considering Encoding Information for CNN based In-loop Filter in Inter Video Coding (화면 간 예측에서 인코딩 정보를 고려한 딥러닝 기반 인루프 필터)

  • Kim, Yang-Woo;Lee, Yung-Lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.143-144
    • /
    • 2020
  • VVC (Versatile Video Coding)는 HEVC이후 차세대 표준 비디오 코딩으로 JVET(Joint Video Exploration)에 의해 2018년 표준화를 시작하였다. VVC에는 복원픽쳐의 변환-양자화에러에 의해 발생한 블로어, 블로킹, 링잉 아티팩트를 감소시키기 위하여 deblocking filter (DF), sample adaptive offset (SAO), adaptive loop filter(ALF)와 같은 모듈을 사용한다. 한편 CNN (Convolutional Neural Network)은 최근 이미지와 비디오 복원에 높은 성능을 보이고 있다. VVC에서 픽쳐는 CTU (Coding Tree Unit)으로 분할되고 각 CTU는 다시 CU (Coding Unit)으로 분할된다. 그리고 인코딩을 위한 중요한 정보들이 Picture, CTU, CU단위로 디코더에 전송된다. 이 논문에서는 화면 간 예측으로 인코딩 된 픽처에서 블록과 픽처정보를 이용한 딥러닝 기반의 인루프 필터 모델을 제안한다. 제안하는 모델은 화면 간 예측에서 QP, 4×4 블록단위의 모션벡터, 참조블록과의 시간적거리, CU의 깊이를 모델에 추가적인 정보로 이용한다.

  • PDF

Image-adaptive lossless image compression (영상 적응형 무손실 이미지 압축)

  • OH Hyun-Jong;Won Jong-woo;Jang Euee S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.61-64
    • /
    • 2003
  • 무손실 이미지 압축은 (Lossless Image Compression)은 손실이미지 압축(Lossy Image Compression)에 비해, 압축률(compression ratio)은 떨어지지만, 반면 원이미지와 복원이미지가 완전히 일치하므로, 원인이미지의 품질을 그대로 유지학 수 있다. 따라서, 이미지의 품질(Quality)과 압축효율(compression ratio)은 서로 상반된 관계에 있으며, 지금도 좀 더 놀은 압축효과를 얻으려는 여러 무손실 압축 방법이 발표되고 있다. 무손실 이미지 압축은 이미지의 정확성과 정밀성이 요구되는, 의료영양분야에서 가장 널리 쓰이고 있으며, 그밖에, 원본이미지를 기본으로 다른 이미지프로세싱이 필요한 경우, 압축 복원을 반복적으로 수행할 필요가 있을 때, 기타 사진 예술분야, 원격 영상 등 정밀성이 요구되는 분양에서 쓰이고 있다. [7]. 무손실 이미지 압축의 가장 대표적인 CALIC[3]과 JPEG_LS[2]를 들 수 있다. CALIC은 비교적 높은 압축률을 나타내지만, 3-PASS의 과정을 거치는 복잡도가 지적되고 있다. 반면 JPEG-LS는 압축률은 CALIC에 미치지 못하지만 빠른 코딩/디코딩 속도를 보인다. 본 논문에서는 여거 가지의 예측 모드를 두어, 블록단위별로 주변 CONTEXT에 따라, 최상의 예측 모드를 판단하여, 이를 적용, 픽셀의 여러 값을 최소화하였다. 그 후 적응산술 부호기(Adaptive arithmetc coder)를 이용하여, 인코딩을 하였다. 이때 최대 에러값은 64를 넘지 않게 했으며, 또한 8*8블록별로 에러의 최대값을 측정하여 그 값을 $0\~7$까지의 8개의 대표값으로 양자화하는 방법을 통하여 그에 따라 8개의 보호화 심볼 모델중 알맞은 모델에 적용하였다. 이를 통해, 그 소화값의 확률 구간을 대폭 넓힘으로써, 에러 이미지가 가지고 있는 엔트로피에 좀 근접하게 코딩을 할 수 있게 되었다. 이 방법은 실제로 Arithmetic Coder를 이용하는 다른 압축 방법에 그리고 적용할 수 있다. 실험 결과 압축효율은 JPEG-LS보다 약 $5\%$의 압축 성능 개선이 있었으며, CALIC과는 대등한 압축률을 보이며, 부호화/복호화 속도는 CALIC보다 우수한 것으로 나타났다.

  • PDF

Channel-Adaptive Bidirectional Motion Vector Tracking over Wireless Packet Network (무선 패킷 네트워크에서의 채널 적응형 양방향 움직임 벡터 추적 기술)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.94-101
    • /
    • 2007
  • Streaming video is expected to become a key service in the developing heterogeneous wireless network. However, sufficient quality of service is not offered to video applications because of bursty packet losses. An effective solution for packet loss in wireless network is to perform a proper concealment at the receiver. However, most concealment methods can not conceal effectively the consecutively damaged macro blocks, since the neighboring blocks are lost. In the previous work, bidirectional motion vector tracking (BMVT) method has been proposed which uses the moving trajectory feature of the damaged macro blocks. In this paper, a channel-adaptive redundancy coding method for the better BMVT error concealment is presented. The proposed method provides enhanced video quality at the cost of a little bit overhead in the wireless error-prone network.

Design and Implementation of Error Concealment Algorithm using Data Hiding and Adaptive Selection of Adjacent Motion Vectors (정보숨김과 주변 움직임 벡터의 적응적 선택에 의한 에러은닉 알고리즘의 설계 및 구현)

  • Lee, Hyun-Woo;Seong, Dong-Su;Lee, Keon-Bae
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.607-614
    • /
    • 2006
  • In this paper, we propose an error resilience video coder which uses a hybrid error concealment algorithm. Firstly, the algorithm uses the error concealment with data hiding. If the hiding information is lost, the motion vector of lost macroblock is computed with adaptive selection of adjacent motion vectors and OBMC (Overlapped Block Motion Compensation) is applied with this motion vector. We know our algorithm is more effective in case of continuous GOB. The results show more significant improvement than many temporal concealment methods such as MVRI (Motion Vector Rational Interpolation) or existing error concealment using data hiding.

Cell-Based Wavelet Compression Method for Volume Data (볼륨 데이터를 위한 셀 기반 웨이브릿 압축 기법)

  • Kim, Tae-Yeong;Sin, Yeong-Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1285-1295
    • /
    • 1999
  • 본 논문은 방대한 크기의 볼륨 데이타를 효율적으로 렌더링하기 위한 셀 기반 웨이브릿 압축 방법을 제시한다. 이 방법은 볼륨을 작은 크기의 셀로 나누고, 셀 단위로 웨이브릿 변환을 한 다음 복원 순서에 따른 런-길이(run-length) 인코딩을 수행하여 높은 압축율과 빠른 복원을 제공한다. 또한 최근 복원 정보를 캐쉬 자료 구조에 효율적으로 저장하여 복원 시간을 단축시키고, 에러 임계치의 정규화로 비정규화된 웨이브릿 압축보다 빠른 속도로 정규화된 압축과 같은 고화질의 이미지를 생성하였다. 본 연구의 성능을 평가하기 위하여 {{}} 해상도의 볼륨 데이타를 압축하여 쉬어-? 분해(shear-warp factorization) 알고리즘에 적용한 결과, 손상이 거의 없는 상태로 약 27:1의 압축율이 얻어졌고, 약 3초의 렌더링 시간이 걸렸다.Abstract This paper presents an efficient cell-based wavelet compression method of large volume data. Volume data is divided into individual cell of {{}} voxels, and then wavelet transform is applied to each cell. The transformed cell is run-length encoded according to the reconstruction order resulting in a fairly good compression ratio and fast reconstruction. A cache structure is used to speed up the process of reconstruction and a threshold normalization scheme is presented to produce a higher quality rendered image. We have combined our compression method with shear-warp factorization, which is an accelerated volume rendering algorithm. Experimental results show the space requirement to be about 27:1 and the rendering time to be about 3 seconds for {{}} data sets while preserving the quality of an image as like as using original data.