• Title/Summary/Keyword: 에너지 흡수

Search Result 1,780, Processing Time 0.024 seconds

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Irregular Arrangement of Reference Points (참조점의 불규칙적 배치를 통한 PIC보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cho, Jae Ung;Cheon, Seong S.
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.216-221
    • /
    • 2019
  • Piecewise integrated composite (PIC) beam has different stacking sequences for several regions with respect to their superior load-resisting capabilities. On the interest of current research is to improve bending characteristics of PIC beam, with assigning specific stacking sequence to a specific region with the help of machine learning techniques. 240 elements of from the FE model were chosen to be reference points. Preliminary FE analysis revealed triaxialities at those regularly distributed reference points to obtain learning data creation of machine learning. Triaxiality values catagorise the type of loading i.e. tension, compression or shear. Machine learning model was formulated by learning data as well as hyperparameters and proper load fidelity was suggested by tuned values of hyperparameters, however, comparatively higher nonlinearity intensive region, such as side face of the beam showed poor load fidelity. Therefore, irregular distribution of reference points, i.e., dense reference points were distributed in the severe changes of loading, on the contrary, coarse distribution for rare changes of loading, was prepared for machine learning model. FE model with irregularly distributed reference points showed better load fidelity compared to the results from the model with regular distribution of reference points.

Pogo Suppressor Design of a Space Launch Vehicle using Multiple-Objective Optimization Approach (다목적함수 최적화 기법을 이용한 우주발사체의 포고억제기 설계)

  • Yoon, NamKyung;Yoo, JeongUk;Park, KookJin;Shin, SangJoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • POGO is a dynamic axial instability phenomenon that occurs in liquid-propelled rockets. As the natural frequencies of the fuselage and those of the propellant supply system become closer, the entire system will become unstable. To predict POGO, the propellant (oxidant and fuel) tank in the first stage is modeled as a shell element, and the remaining components, the engine and the upper part, are modeled as mass-spring, and structural analysis is performed. The transmission line model is used to predict the pressure and flow perturbation of the propellant supply system. In this paper, the closed-loop transfer function is constructed by integrating the fuselage structure and fluid modeling as described above. The pogo suppressor consists of a branch pipe and an accumulator that absorbs pressure fluctuations in a passive manner and is located in the middle of the propellant supply system. The design parameters for its design optimization to suppress the decay phenomenon are set as the diameter, length of the branch pipe, and accumulator. Multiple-objective function optimization is performed by setting the energy minimization of the closed loop transfer function in terms of to the mass of the pogo suppressor and that of the propellant as the objective function.

A Study on Minimization of Harbor Oscillations by Infragravity Waves Using Permeable Breakwater (투과제를 이용한 중력외파의 항내 수면진동 저감 방법에 대한 연구)

  • Kwak, Moon Su;Jeong, Weon Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.434-445
    • /
    • 2020
  • In this study, the minimization of harbor oscillation using permeable breakwater was applied to the actual harbor and investigated an effect of minimization by computer simulation in order to take into account the water quality problems and measures of harbor oscillation by infragravity waves at the same time. The study site is Mukho harbor located at East coast of Korea that harbor oscillation has been occurred frequently. The infragravity waves obtained by analyzing the observed field data for five years focused on the distribution between wave periods of 40 s and 70 s and wave heights in less than 0.1 m was 94% of analyzing data. The target wave periods was 68.0 s. The most effective method of minimization of harbor oscillation by infragravity waves was to install a detached permeable breakwater with transmission coefficient of 0.3 on the outside harbor and replace some area of the vertical wall in the harbor with wave energy dissipating structure to achieve a reflectivity of 0.9 or less. The amplitude reduction rate of this method shown in 27.4%. And the effect of the difference in transmission coefficient of permeable breakwater on the reduction rate of the amplitude was not significant.

Biochemical Methane Potential Analysis for Anaerobic Digestion of Marine Algae (해조류의 혐기소화를 위한 메탄생산퍼텐셜 분석)

  • Lee, Jun-Hyeong;Kim, Tae-Bong;Shin, Kook-Sik;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • Marine algae(Macro algae) are easily bio-degradable, and by-products are available as feed and fertilizer. The biomass of marine algae has higher CO2 absorption capacity than the wood system, and is highly valuable in use due to its fast growth speed and wide cultivation area without special cost for raw material production. In 2018, Marine algae production was 1,722,486ton, such as Saccharina japonica, Undaria pinnatifida and Porphyra tenera, the large amounts of by-products have been generated in the food processing facilities for commercialization. In this study, Saccharina japonica, Undaria pinnatifida were collected in the south coast region and Porphyra tenera was collected in the west coast region. The theoretical methane potential and biochemical methane potential(BMP) were analyzed, and Modified Gompertz model and Parallel first order kinetics model were adopted for the interpretation of the cumulative methane production curves. The theoretical methane potential of Saccharina japonica, Undaria pinnatifida and Porphyra tenera were 0.393, 0.373 and 0.435 N㎥/kg-VS, respectively. BMP obtained by the Modified gompertz model 0.226, 0.227, and 0.241 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively. And BMP obtained by the Parallel first order kinetics model were 0.220, 0.243, and 0.240 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively.

Mechanical Properties of Metallic Additive Manufactured Lattice Structures according to Relative Density (상대 밀도에 따른 금속 적층 제조 격자 구조체의 기계적 특성)

  • Park, Kwang-Min;Kim, Jung-Gil;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The lattice structure is attracting attention from industry because of its excellent strength and stiffness, ultra-lightweight, and energy absorption capability. Despite these advantages, widespread commercialization is limited by the difficult manufacturing processes for complex shapes. Additive manufacturing is attracting attention as an optimal technology for manufacturing lattice structures as a technology capable of fabricating complex geometric shapes. In this study, a unit cell was formed using a three-dimensional coordinate method. The relative density relational equation according to the boundary box size and strut radius of the unit cell was derived. Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) with a controlled relative density were designed using modeling software. The accuracy of the equations for calculating the relative density proposed in this study secured 98.3%, 98.6%, and 96.2% reliability in SC, BCC, and FCC, respectively. A simulation of the lattice structure revealed an increase in compressive yield load with increasing relative density under the same cell arrangement condition. The compressive yield load decreased in the order of SC, BCC, and FCC under the same arrangement conditions. Finally, structural optimization for the compressive load of a 20 mm × 20 mm × 20 mm structure was possible by configuring the SC unit cells in a 3 × 3 × 3 array.

Thermal and UV Resistance of Polytrimethylene Terephthalate Bulked Continuous Filament (PTT BCF) dyed with Vat Dye via Pad-steam Method and its Dyeing Properties (Pad-steam 법을 활용한 PTT BCF에 대한 vat 염료의 염색 특성과 내열성 및 내광성 효과)

  • Lee, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.23-32
    • /
    • 2020
  • This study investigated the thermal degradation and fading behavior of PTT dyed with vat dye and its dyeing ability. The PTT sample was dyed with vat dye using an acid treatment and pad-steam method to improve the dyeing performance. This method made dye particle nanosize and allowed it to penetrate the polymer material easily. The sample dyed using the pad-steam method showed level dyeing and enhanced dyeing affinity, compared to the batch-dyeing method. The degradation behavior of PTT dyed with vat dye after each heat and UV treatment was examined with the change in tensile strength or K/S value on the sample. The tensile strength and K/S values of the sample dyed with vat dye after the heat and UV treatment decreased with increasing temperature and exposure time. Although they showed high degradation under severe conditions, its rate constant was improved compared to the samples dyed with disperse dye. Consequently, acid treatment and the pad-steam method resulted in the introduction of vat dye on PTT. In addition, the PTT dyed with vat dye showed enhanced thermal and UV resistance because of their high molecular weight and chemical structure for stable adsorption behavior.

Bone mineral density in type 2 diabetic patients aged 50 years or older in men and postmenopausal women in Korea

  • Cho, Jeong-Ran;Chung, Dong Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.197-207
    • /
    • 2021
  • Relationship between bone mineral density (BMD) and type 2 diabetes is still inconsistent. Recently, many epidemiologic data show that fracture risk is increased in type 2 diabetic patients regardless of BMD status. In this study, we used nation-wide data from 2008 to 2011 Korea National Health and Nutrition Examination Survey (KNHANES) to analyze the BMD status in patients with type 2 diabetes compared to non-diabetics. We included subjects aged 50 years or older in men (N=2,959, 2,430 without diabetes, 529 with type 2 diabetes) and postmenopausal women (N=2,902, 2,479 without diabetes, 423 with type 2 diabetes). Subjects with history of medication for osteoporosis or with illness or malignancy affecting bone metabolism were excluded. Data of anthropometric measurements and demographic characteristics were collected by trained examiner. Serum was separated from peripheral venous blood samples obtained after 8 hours of fasting. BMD was measured at lumbar spine and femur using dual-energy X-ray absorptiometry (DXA). There was a significant positive association between lumbar spine BMD and type 2 diabetes after adjusting age, gender, body mass index, monthly house income, education level, physical activity, daily calcium intake and vitamin D concentration by multiple regression analysis in all subjects. In the subgroup analysis by gender, this association was maintained both in male and female after adjusting those confounding factors. However, femur BMD was not different between type 2 diabetic and non-diabetic subjects. In conclusion, lumbar spine BMD was significantly higher in type 2 diabetic patients aged 50 years or more in men and postmenopausal women compared to non-diabetic subjects.

The association between body composition and bone mineral density in subjects aged 50 years or older in men and postmenopausal women in Korea

  • Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.209-220
    • /
    • 2021
  • The effect of body composition such as lean mass and fat mass on bone mineral density (BMD) is complex and still controversial. In this study, we investigated the relationship between body composition and bone mineral density using nation-wide data from 2008 to 2011 Korea National Health and Nutrition Examination Survey (KNHANES) in 2,139 men and 2,193 postmenopausal women aged 50 years or older. Subjects with history of medication for osteoporosis or with diseases or malignancy affecting bone metabolism were excluded. Data of anthropometric measurements and demographic characteristics were collected by trained examiner. Fasting blood sample was obtained for blood chemistry analysis. BMD of the lumbar spine, total femur, and femoral neck, and body composition such as total lean mass (TLM), total fat mass (TFM), truncal fat mass (TrFM) were measured using dual-energy X-ray absorptiometry (DXA). There were significant positive correlations between body composition indices such as lean mass and fat mass with BMD. In multiple regression analysis, TLM was positively associated with BMD after adjusting age, body mass index, monthly house income, education level, physical activity, daily calcium intake and vitamin D concentration in both men and postmenopausal women. BMD at lumbar spine and femur in lowest quartile of TLM was significantly lower than other quartiles after adjusting those confounding factors in both gender. TrFM was negatively associated with total femur BMD in male and femur neck BMD in postmenopausal women after adjusting confounding factors. In conclusion, TLM is very important factor in maintaining BMD in subjects aged 50 years or older in men and postmenopausal women.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.

Pyrolysis Effect of Nitrous Oxide Depending on Reaction Temperature and Residence Time (반응온도 및 체류시간에 따른 아산화질소 열분해 효과)

  • Park, Juwon;Lee, Taehwa;Park, Dae Geun;Kim, Seung Gon;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1074-1081
    • /
    • 2021
  • Nitrous oxide (N2O) is one of the six major greenhouse gases and is known to produce a greenhouse ef ect by absorbing infrared radiation in the atmosphere. In particular, its global warming potential (GWP) is 310 times higher than that of CO2, making N2O a global concern. Accordingly, strong environmental regulations are being proposed. N2O reduction technology can be classified into concentration recovery, catalytic decomposition, and pyrolysis according to physical methods. This study intends to provide information on temperature conditions and reaction time required to reduce nitrogen oxides with cost. The high-temperature ranges selected for pyrolysis conditions were calculated at intervals of 100 K from 1073 K to 1373 K. Under temperatures of 1073 K and 1173 K, the N2O reduction rate and nitrogen monoxide concentration were observed to be proportional to the residence time, and for 1273 K, the N2O reduction rate decreased due to generation of the reverse reaction as the residence time increased. Particularly for 1373 K, the positive and reverse reactions for all residence times reached chemical equilibrium, resulting in a rather reduced reaction progression to N2O reduction.