• Title/Summary/Keyword: 에너지 효율 라우팅 기법

Search Result 223, Processing Time 0.021 seconds

A Wireless Sensor Network Architecture and Security Protocol for Monitoring the State of Bridge (교량감시를 위한 무선 센서 네트워크 구조 및 보안 프로토콜)

  • Lim Hwa-Jung;Jeon Jin-Soon;Lee Heon-Guil
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.3
    • /
    • pp.465-476
    • /
    • 2005
  • The wireless sensor network consists of a number of sensor nodes which have physical constraints. Each sensor node senses surrounding environments and sends the sensed information to Sink. In order to alleviate the inherent vulnerability in security of the wireless sensor nodes with the hardware constraints, the lightweight security protocol is needed and a variety of research is ongoing. In this paper, we propose a non-hierarchical sensor network and a security protocol that is suitable for monitoring man-made objects such as bridges. This paper, furthermore, explores a two-layer authentication, key distribution scheme which distributes the key and location of a sensor node in advance, and an effective security routing protocol which can take advantage of the Sleep and Awake state. This also results in the increased data transfer rate by increasing the number of alternative routing paths and the reduced energy consumption rate.

  • PDF

A Design of Enhanced Lower-Power Data Dissemination Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 개선된 저전력형 데이터 확산 프로토콜 설계)

  • Choi Nak-Sun;Kim Hyun-Tae;Kim Hyoung-Jin;Ra In-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.437-441
    • /
    • 2006
  • Wireless sensor network consists of sensor nodes which are disseminated closely to each other to collect informations for the various requests of a sensor application applied for sensing phenomenons in real world. Each sensor node delivers sensing informations to an end user by conducting cooperative works such as processing and communicating between sensor nodes. In general, the power supply of a sensor node is depends on a battery so that the power consumption of a sensor node decides the entire life time of a sensor network. To resolve the problem, optimal routing algorithm can be used for prolong the entire life time of a sensor network based on the information on the energy level of each sensor node. In this paper, different from the existing Directed Diffusion and SPTN method, we presents a data dissemination protocol based on lower-power consumption that effectively maximizes the whole life time of a sensor network using the informations on the energy level of a sensor node and shortest-path hops. With the proposed method, a data transfer path is established using the informations on the energy levels and hops, and the collected sensing information from neighboring nodes in the event-occurring area is merged with others and delivered to users through the shortest path.

  • PDF

Cross-layer Design of Joint Routing and Scheduling for Maximizing Network Capacity of IEEE 802.11s based Multi-Channel SmartGrid NAN Networks (IEEE 802.11s 를 사용한 스마트그리드 NAN 네트워크의 최대 전송 성능을 위한 다중 채널 스케쥴링과 라우팅의 결합 설계)

  • Min, Seok Hong;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.25-36
    • /
    • 2016
  • The goal of the SmartGrid is to maximize energy efficiency by exchanging bi-directional real-time power information with the help of ICT(Information and Communication Technology). In this paper, we propose a "JRS-MS" (Joint Routing and Scheduling for Multi-channel SmartGrid) algorithm that uses numerical modeling methods in IEEE 802.11s based STDMA multi-channel SmartGrid NAN networks. The proposed algorithm controls the amount of data transmission adaptively at the link layer and finds a high data-rate path which has the least interference between traffic flows in multi-channel SmartGrid NAN networks. The proposed algorithm improve transmission performance by enhancing network utilization. By comparing the results of performance analysis between the proposed algorithm and the JRS-SG algorithm in the previous paper, we showed that the JRS-MS algorithm can improve transmission performance by maximally utilizing given network resources when the number of flows are increasing in the multi-hop NAN wireless mesh networks.