• Title/Summary/Keyword: 에너지 저장 콘크리트

Search Result 29, Processing Time 0.021 seconds

Influence of Temperature on Chloride Ion Diffusion of Concrete (콘크리트의 염화물이온 확산성상에 미치는 온도의 영향)

  • So, Hyoung-Seok;Choi, Seung-Hoon;Seo, Chung-Seok;Seo, Ki-Seog;So, Seung-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.71-78
    • /
    • 2014
  • The long term integrity of concrete cask is very important for spent nuclear fuel dry storage system. However, there are serious concerns about early deterioration of concrete cask from creaking and corrosion of reinforcing steel by chloride ion because the cask is usually located in seaside, expecially by combined deterioration such as chloride ion and heat, carbonation. This study is to investigate the relation between temperature and chloride ion diffusion of concrete. Immersion tests using 3.5% NaCl solution that were controlled in four level of temperature, i.e. 20, 40, 65, and $90^{\circ}C$, were conducted for four months. The chloride ion diffusion coefficient of concrete was predicted based on the results of profiles of Cl- ion concentration with the depth direction of concrete specimens using the method of potentiometric titration by $AgNO_3$. Test results indicate that the diffusion coefficient of chloride ion increases remarkably with increasing temperature, and there was a linear relation between the natural logarithm values of the diffusion coefficients and the reciprocal of the temperature from the Arrhenius plots. Activation energy of concrete in this study was about 46.6 (W/C = 40%), 41.7 (W/C = 50%), 30.7 (W/C = 60%) kJ/mol under a temperature of up to $90^{\circ}C$, and concrete with lower water-cement ratio has a tendency towards having higher temperature dependency.

Evaluation Study of Blast Resistance and Structural Factors in the Explosive Simple Storage by Numerical Analysis (수치해석을 통한 화약류 간이저장소의 방폭성 및 구조인자 평가연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Kim, Nam-Soo;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • The design regulations for simple explosive storage in Korea only stipulate standards for the materials and thickness of the wall of the structure because the amount of explosives that can be stored is small. There is concern about secondary damage during an internal explosion in a simple storage facility, and it is necessary to reexamine the current standards. The numerical analysis for the TNT 15 kg explosion inside the simple storage was carried out by setting the factors using the robust experimental design method. The displacement of the structure generated under the same time condition was analyzed, and the contribution was evaluated. The contribution of concrete thickness was the highest, and the contribution of concrete strength and rebar arrangement was lower than that of concrete thickness. The reinforcement diameter contributed extremely little to the displacement. The structural standards of the simple storage that are currently applied are insufficient on blast resistance, and it is necessary to present new design standards. Therefore, the design factor to be applied later analysis and actual experiments were taken into consideration. For the design variables, the thickness of the concrete was 15 cm considering the displacement, the concrete strength was selected as general concrete considering the inlet discharge pressure, the factor with the lowest average displacement was selected for the reinforcement arrangement and the diameter of the reinforcement, the factor with the smallest level was selected in consideration of economic feasibility because the difference in displacement was low.

A study on the safety improvement of above ground membrane LNG storage tank (상지상식 멤브레인 액화천연가스 저장탱크의 안전성 향상 방안)

  • Lee, Seung Rim;Kim, Han Sang
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.339-345
    • /
    • 2012
  • RMembrane LNG storage tanks have been recently investigated to replace full-containment LNG storage tanks because of safety and cost aspects. Quantitative Risk Analysis (QRA) and Finite Element Method (FEM) were used to evaluate safety of membrane LNG storage tanks. In this study, structural safety evaluation results via FEM analysis showed that both membrane type and full-containment type cryogenic LNG storage tanks with 140,000 $m^3$ capacity were equivalently safe in terms of strength safety and leakage safety of a storage tank system. Also, Fault Tree Analysis (FTA) was used to improve the safety of membrane LNG storage tanks and membrane LNG tanks were modified by adding three safety equipments: impact absorber structure for the low part of the membrane, the secondary barrier to diminish the thermal stress of the corner part of the outer tank, and a pump catcher in case of falling of a pump. Consequently, the safety of the modified membrane LNG storage tanks were proved to be equivalent to that of full-containment LNG storage tanks.

Shielding Thickness Calculations for Line Gamma-ray Sources in Regular Geometrical Array (일반적(一般的) 배열(配列)인 선형(線型) 감마선원(線源)의 차폐계산(遮蔽計算))

  • Lee, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.3 no.1
    • /
    • pp.29-32
    • /
    • 1978
  • A shielding calculation has been carried out for a storage vault of $5292(42{\times}42{\times}3)$ waste drums in which the mixed radioactive gamma-emitters are contained. The required ordinary concrete shielding thickness seems to be approximately 50cm. The results in terms of dose rate for polyenergy gammas appear to be considerably higher than those of the averaged energy gamma.

  • PDF

Environment-Related Impacts on the Use of Wood and Wood-Based Materials (목재 및 목질재료 이용에 관한 환경적 연관효과)

  • 오세창
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 1999
  • The greenhouse effect becomes the most serious environmental problem due to excessive emission of carbon dioxide. This effect is aggravated with the deforestation, particularly cleaning of tropical forest for agricultural use. As trees sequester carbon dioxide from atmosphere, forest and forest products play an important role in the use and reduction of carbon dioxide. Wood and wood products require far less energy than the alternatives such as steel, aluminium and concrete for production. Considering high probability of increasing costs in the use of fossil fuel, the relatively low energy requirement for wood processing to very important. Also wood and wood products perform as a long-term storage of carbon. Wood is therefore an environmentally desirable resource. Recently, many alternatives have been introduced for industrial use. In selecting resources, many aspects should be taken into consideration. Wood and wood products have less harmful effects on the environment than the alternatives. We should utilize wood and wood products more efficiently, which should be provided based on the sustainable forest management.

  • PDF

Collision Behaviors Analysis of Sandwich Concrete Panel for Outer Shell of LNG Tank (LNG외조를 구성하는 샌드위치 콘크리트 패널의 충돌거동해석)

  • Lee, Gye Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.485-493
    • /
    • 2017
  • In this study, the collision analysis of SCP(Sandwich Concrete Panel) composing the outer tank of LNG storage was performed and its collision behavior was analyzed. For the same collision energy value proposed in BS7777 code, the collision conditions are composed by using two types of missiles and various collision speeds. Nonlinear dynamic analysis models were constructed to perform numerical analysis on the various collision conditions. Also, the collision behavior was analyzed assuming that the second collision with the same collision energy occurs at the same point after the first collision. As a result of the analysis, it was found that with smaller missile and low collision speed had caused larger deformation. The collision energy dissipated in ratio of about 6: 4 in the outer steel plate and the inner filling concrete. In the results of double collision analysis, the final collisional deformation was dominated by the size of the second missile, and the amount of deformation due to the second collision was smaller than that of the first collision because of the membrane behavior of the steel plates. In the offset double collision cases, the largest deformation occurs at the secondary collision point regardless of the offset distance.

Effects of the SDS Dosage on the Paraffin Wax Micro-Capsulation by the Interfacial Polymerization (계면중합법에 의한 파라핀왁스의 마이크로캡슐화에 있어서 SDS 첨가량이 미치는 영향)

  • Shin, Se-Soon;Jung, Jae-Yoon;Kim, Young-Ho;Lim, Myung-Kwan;Choi, Dong-Uk;Lee, Chin-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.60-68
    • /
    • 2012
  • In this study, the manufacturing process of micro capsulized PCM (phase changing material) for thermal storage performance of latent heat was investigated to save energy during the use of buildings: i.e. use of melamine-type resin as the micro-capsule material and paraffin wax as the inner material that are together used in concrete walls. For the manufacturing process of the micro-capsulized PCM, the amount of SDS addition as surfactant was the key variable and the resulting thermal storage performance depended on the SDS amount. With increasing amount of SDS, the micro capsulation became much easier while the capsule surface became harder. The micro capsules became uniform at an optimum SDS addition. The addition of SDS also affected the thermal capacity: with increasing SDS amount, the heat storage and release tendency at melting point was more clearly manifested. The current investigation is part of a study under progress to explore the use of PCM in concrete walls to save building maintenance cost and energy.

  • PDF

Direct Time Domain Method for Nonlinear Earthquake Response Analysis of Dam-Reservoir Systems (댐-호소계 비선형 지진응답의 직접시간영역 해석기법)

  • Lee, Jin-Ho;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • An analysis method is proposed for the transient linear or nonlinear analysis of dynamic interactions between a flexible dam body and reservoir impounding compressible water under earthquake loadings. The coupled dam-reservoir system consists of three substructures: (1) a dam body with linear or nonlinear behavior; (2) a semi-infinite fluid region with constant depth; and (3) an irregular fluid region between the dam body and far field. The dam body is modeled with linear and/or nonlinear finite elements. The far field is formulated as a displacement-based transmitting boundary in the frequency domain that can radiate energy into infinity. Then the transmitting boundary is transformed for the direct coupling in the time domain. The near field region is modeled as a compressible fluid contained between two substructures. The developed method is verified and applied to various earthquake response analyses of dam-reservoir systems. Also, the method is applied to a nonlinear analysis of a concrete gravity dam. The results show the location and severity of damage demonstrating the applicability to the seismic evaluation of existing and new dams.

Research and Consideration of Eco-friendly Radiation Shielding using CT Contrast Agent (CT 조영제를 이용한 친환경적인 방사선 차폐에 관한 연구 및 고찰)

  • Sung-Gil Kim;Yeon-Sang Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.827-833
    • /
    • 2023
  • CT(Computed Tomography) contrast agents are commonly used in general hospitals and university hospitals when taking radiographic examinations. The CT contrast medium contains a mixture of a substance called "Iodine", which absorbs radiation energy and makes it appear white in the CT image, further improving the image quality. In addition, the CT contrast agent, which moves like blood in the blood vessels, clearly differentiates it from muscle and water, so CT contrast agents are widely used in hospitals. These CT contrast agents absorb X-rays, but in order to absorb X-rays, they must have a high density or a high radiation absorption coefficient. Since the CT contrast agent is injected into the blood vessels, if the density is high, the blood vessels are strained and the patient is in shock. For this reason, it is necessary to match the density similar to that of water and always pay attention to side effects. In addition, the amount of CT contrast medium is adjusted according to the patient's body shape, and the remaining contrast medium is discarded. However, This study tried to find out the idea of recycling it as a radiation shielding material. Since the CT contrast medium has a high radiation absorption coefficient at a density similar to that of water, the amount to absorb radiation is adjusted, the amount of contrast medium and the amount of water are adjusted, and the amount of radiation absorbed is determined by mixing with water. In addition, a study was conducted to find out the result of the difference in radiation absorption in various ways by comparing the radiation quality coefficient and absorption coefficient with other substances or materials in an environmentally friendly method harmless to the human body by mixing CT contrast medium and water.