• Title/Summary/Keyword: 에너지타워관측

Search Result 33, Processing Time 0.026 seconds

Assessment of Solar Insolation from COMS: Sulma and Cheongmi Watersheds (천리안 위성의 일사량 검증: 설마천, 청미천)

  • Baek, Jongjin;Byun, Kyunhyun;Kim, Dongkyun;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.137-149
    • /
    • 2013
  • Solar insolation is essential to understand the interaction between the earth and solar system, and it is a significant parameter that is utilized in various research fields including earth science, agriculture, and energy engineering. Although solar insolation is broadly measured in the ground-based observation station, it is difficult to identify the spatial distribution of solar insolation accurately. The remote sensing approach is known to have several benefits because it can provide continuous data sets for large area. In this study, we conducted the validation of solar insolation from COMS in the South Korea by comparing with flux tower observation. The results showed that the correlations between COMS and observation were high in both 30 minutes interval data and daily average data. Thus, we can identify that COMS can provide a reasonable estimate of solar insolation.

Correlation Analysis between Wave Parameters using Wave Data Observed in HeMOSU-1&2 (HeMOSU-1&2의 파랑 관측 자료를 이용한 파랑 변수 간 상관관계 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Cho, Hong-Yeon;Oh, Nam-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.139-147
    • /
    • 2021
  • In this study, waves were defined using the water surface elevation data observed from the HeMOSU-1 and 2 marine meteorological observation towers installed on the west coast of Korea, and correlation analysis was performed between wave parameters. The wave height and wave period were determined using the wave-train analysis method and the wave spectrum analysis method, and the relationship between the wave parameters was calculated and compared with the previous study. In the relation between representative wave heights, most of the correlation coefficients between waves showed a difference of less than 0.1% in error rate compared to the previous study, and the maximum wave height showed a difference of up to 29%. In addition, as a result of the correlation analysis between the wave periods, the peak period was estimated to be abnormally large at rates of 2.5% and 1.3% in HeMOSU-1&2, respectively, due to the effect of the bimodal spectrum that occurs when the spectral energy density is small.

Generation and Verification of Synthetic Wind Data With Seasonal Fluctuation Using Hidden Markov Model (은닉 마르코프 모델을 이용하여 계절의 변동을 동반한 인공 바람자료 생성 및 검증)

  • Park, Seok-Young;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.963-969
    • /
    • 2021
  • The wind data measured from local meteorological masts is used to evaluate wind speed distribution and energy production in the specified site for wind farm However, wind data measured from meteorological masts often contain missing information or insufficient desired height or data length, making it difficult to perform wind turbine control and performance simulation. Therefore, long-term continuous wind data is very important to assess the annual energy production and the capacity factor for wind turbines or wind farms. In addition, if seasonal influences are distinct, such as on the Korean Peninsula, wind data with seasonal characteristics should be considered. This study presents methodologies for generating synthetic wind that take into account fluctuations in both wind speed and direction using the hidden Markov model, which is a statistical method. The wind data for statistical processing are measured at Maldo island in the Kokunnsan-gundo, Jeonbuk Province using the Automatic Weather System (AWS) of the Korea Meteorological Administration. The synthetic wind generated using the hidden Markov model will be validated by comparing statistical variables, wind energy density, seasonal mean speed, and prevailing wind direction with measurement data.

Offshore Wind Resource Assessment around Korean Peninsula by using QuikSCAT Satellite Data (QuikSCAT 위성 데이터를 이용한 한반도 주변의 해상 풍력자원 평가)

  • Jang, Jea-Kyung;Yu, Byoung-Min;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1121-1130
    • /
    • 2009
  • In order to investigate the offshore wind resources, the measured data from the QuikSCAT satellite was analyzed from Jan 2000 to Dec 2008. QuikSCAT satellite is a specialized device for a microwave scatterometer that measures near-surface wind speed and direction under all weather and cloud conditions. Wind speed measured at 10 m above from the sea surface was extrapolated to the hub height by using the power law model. It has been found that the high wind energy prevailing in the south sea and the east sea of the Korean peninsula. From the limitation of seawater depth for piling the tower and archipelagic environment around the south sea, the west and the south-west sea are favorable to construct the large scale offshore wind farm, but it needs efficient blade considering relatively low wind speed. Wind map and monthly variation of wind speed and wind rose using wind energy density were investigated at the specified positions.

Estimation and Analysis of Wave Spectrum Parameter using HeMOSU-2 Observation Data (HeMOSU-2 관측 자료를 이용한 파랑 스펙트럼 매개변수 추정 및 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Kim, Ji-Young;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.217-225
    • /
    • 2021
  • In this study, wave spectrum data were calculated using the water surface elevation data observed at 5Hz intervals from the HeMOSU-2 meteorological tower installed on the west coast of Korea, and wave parameters were estimated using wave spectrum data. For all significant wave height ranges, the peak enhancement parameter (γopt) of the JONSWAP spectrum and the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated based on the observed spectrum, and the distribution of each parameter was confirmed. As a result of the analysis, the peak enhancement parameter (γopt) of the JONSWAP spectrum was calculated to be 1.27, which is very low compared to the previously proposed 3.3. And in the range of all significant wave heights, the distribution of the peak enhancement parameter (γopt) was shown as a combined distribution of probability mass function (PMF) and probability density function (PDF). In addition, the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated to be [0.245, -1.278], which are lower than the existing [0.300, -1.098], and the result of the linear correlation analysis between the two parameters was β = -3.86α.

KoFlux's Progress: Background, Status and Direction (KoFlux 역정: 배경, 현황 및 향방)

  • Kwon, Hyo-Jung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.241-263
    • /
    • 2010
  • KoFlux is a Korean network of micrometeorological tower sites that use eddy covariance methods to monitor the cycles of energy, water, and carbon dioxide between the atmosphere and the key terrestrial ecosystems in Korea. KoFlux embraces the mission of AsiaFlux, i.e. to bring Asia's key ecosystems under observation to ensure quality and sustainability of life on earth. The main purposes of KoFlux are to provide (1) an infrastructure to monitor, compile, archive and distribute data for the science community and (2) a forum and short courses for the application and distribution of knowledge and data between scientists including practitioners. The KoFlux community pursues the vision of AsiaFlux, i.e., "thinking community, learning frontiers" by creating information and knowledge of ecosystem science on carbon, water and energy exchanges in key terrestrial ecosystems in Asia, by promoting multidisciplinary cooperations and integration of scientific researches and practices, and by providing the local communities with sustainable ecosystem services. Currently, KoFlux has seven sites in key terrestrial ecosystems (i.e., five sites in Korea and two sites in the Arctic and Antarctic). KoFlux has systemized a standardized data processing based on scrutiny of the data observed from these ecosystems and synthesized the processed data for constructing database for further uses with open access. Through publications, workshops, and training courses on a regular basis, KoFlux has provided an agora for building networks, exchanging information among flux measurement and modelling experts, and educating scientists in flux measurement and data analysis. Despite such persistent initiatives, the collaborative networking is still limited within the KoFlux community. In order to break the walls between different disciplines and boost up partnership and ownership of the network, KoFlux will be housed in the National Center for Agro-Meteorology (NCAM) at Seoul National University in 2011 and provide several core services of NCAM. Such concerted efforts will facilitate the augmentation of the current monitoring network, the education of the next-generation scientists, and the provision of sustainable ecosystem services to our society.

Estimation of Representative Wave Period and Optimal Probability Density Function Using Wave Observed Data around Korean Western Coast (국내 서해안 파랑 관측자료를 이용한 대표주기 산정 및 최적 확률밀도함수 추정)

  • Uk-Jae Lee;Hong-Yeon Cho;Jin Ho Park;Dong-Hui Ko
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.146-154
    • /
    • 2023
  • In this study, the peak wave period Tp and mean wave period T02 and Tm-1, 0, which are major parameters for classifying ocean characteristics, were calculated using water surface elevation data observed from the second west coast oceanographic and meteorological observation tower. In addition, the ratio of abnormal data, correlation analysis, and optimal probability density function were estimated. In the case of Tp among the calculated representative periods, the proportion of abnormal data was 5.73% and 0.67% at each point, and T02 was 4.35% and 0.01%. Tm-1, 0 was found to be 2.82% and 0.03%. Meanwhile, as a result of analyzing the relationship between T02 and Tp, the relationship was calculated to be 0.53 and 0.63 for each point. The relationship between Tm-1, 0 and Tp was 1.15 and 1.32, respectively, and T02, Tm-1, 0 was 1.18 and 1.22. As a result of estimating the optimal probability density function of the calculated representative period, Tp followed the 'Log-normal' and 'Normal' distributions at each point, and T02 was 'Gamma', 'Normal' distribution and Tm-1, 0 showed that 'Log-normal' and 'Normal' distribution were dominant, respectively. It is decided that these results can be used as basic data for wave analysis conducted on the west coast.

Estimation and Analysis of the Vertical Profile Parameters Using HeMOSU-1 Wind Data (HeMOSU-1 풍속자료를 이용한 연직 분포함수의 매개변수 추정 및 분석)

  • Ko, Dong-Hui;Cho, Hong-Yeon;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • A wind-speed estimation at the arbitrary elevations is key component for the design of the offshore wind energy structures and the computation of the wind-wave generation. However, the wind-speed estimation of the target elevation has been carried out by using the typical functions and their typical parameters, e.g., power and logarithmic functions because the available wind speed data is limited to the specific elevation, such as 2~3m, 10 m, and so on. In this study, the parameters of the vertical profile functions are estimated with optimal and analyzed the parameter ranges using the HeMOSU-1 platform wind data monitored at the eight different locations. The results show that the mean value of the exponent of the power function is 0.1, which is significantly lower than the typically recommended value, 0.14. The values of the exponent, the friction velocity, and the roughness parameters are in the ranges 0.0~0.3, 0~10 (m/s), and 0.0~1.0 (m), respectively. The parameter ranges differ from the typical ranges because the atmospheric stability condition is assumed as the neutral condition. To improve the estimation accuracy, the atmospheric condition should be considered, and a more general (non-linear) vertical profile functions should be introduced to fit the diverse profile patterns and parameters.

Validation of ECOSTRESS Based Land Surface Temperature and Evapotranspiration (PT-JPL) Data Across Korea (국내에서 ECOSTRESS 지표면 온도 및 증발산(PT-JPL) 자료의 검증)

  • Park, Ki Jin;Kim, Ki Young;Kim, Chan Young;Park, Jong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.637-648
    • /
    • 2024
  • The frequency of extreme weather events such as heavy and extreme rainfall has been increasing due to global climate change. Accordingly, it is essential to quantify hydrometeorological variables for efficient water resource management. Among the various hydro-meteorological variables, Land Surface Temperature (LST) and Evapotranspiration (ET) play key roles in understanding the interaction between the surface and the atmosphere. In Korea, LST and ET are mainly observed through ground-based stations, which also have limitation in obtaining data from ungauged watersheds, and thus, it hinders to estimate spatial behavior of LST and ET. Alternatively, remote sensing-based methods have been used to overcome the limitation of ground-based stations. In this study, we evaluated the applicability of the National Aeronautics and Space Administration's (NASA) ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST and ET data estimated across Korea (from July 1, 2018 to December 31, 2022). For validation, we utilized NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data and eddy covariance flux tower observations managed by agencies under the Ministry of Environment of South Korea. Overall, results indicated that ECOSTRESS-based LSTs showed similar temporal trends (R: 0.47~0.73) to MODIS and ground-based observations. The index of agreement also showed a good agreement of ECOSTRESS-based LST with reference datasets (ranging from 0.82 to 0.91), although it also revealed distinctive uncertainties depending on the season. The ECOSTRESS-based ET demonstrated the capability to capture the temporal trends observed in MODIS and ground-based ET data, but higher Mean Absolute Error and Root Mean Square Error were also exhibited. This is likely due to the low acquisition rate of the ECOSTRESS data and environmental factors such as cooling effect of evapotranspiration, overestimation during the morning. This study suggests conducting additional validation of ECOSTRESS-based LST and ET, particularly in topographical and hydrological aspects. Such validation efforts could enhance the practical application of ECOSTRESS for estimating basin-scale LST and ET in Korea.

Processing and Quality Control of Flux Data at Gwangneung Forest (광릉 산림의 플럭스 자료 처리와 품질 관리)

  • Lim, Hee-Jeong;Lee, Young-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.82-93
    • /
    • 2008
  • In order to ensure a standardized data analysis of the eddy covariance measurements, Hong and Kim's quality control program has been updated and used to process eddy covariance data measured at two levels on the main flux tower at Gwangneung site from January to May in 2005. The updated program was allowed to remove outliers automatically for $CO_2$ and latent heat fluxes. The flag system consists of four quality groups(G, D, B and M). During the study period, the missing data were about 25% of the total records. About 60% of the good quality data were obtained after the quality control. The number of record in G group was larger at 40m than at 20m. It is due that the level of 20m was within the roughness sublayer where the presence of the canopy influences directly on the character of the turbulence. About 60% of the bad data were due to low wind speed. Energy balance closure at this site was about 40% during the study period. Large imbalance is attributed partly to the combined effects of the neglected heat storage terms, inaccuracy of ground heat flux and advection due to local wind system near the surface. The analysis of wind direction indicates that the frequent occurrence of positive momentum flux was closely associated with mountain valley wind system at this site. The negative $CO_2$ flux at night was examined in terms of averaging time. The results show that when averaging time is larger than 10min, the magnitude of calculated $CO_2$ fluxes increases rapidly, suggesting that the 30min $CO_2$ flux is influenced severely by the mesoscale motion or nonstationarity. A proper choice of averaging time needs to be considered to get accurate turbulent fluxes during nighttime.