• Title/Summary/Keyword: 에너지검출

Search Result 983, Processing Time 0.02 seconds

The Evaluation of Predose Counts in the GFR Test Using $^{99m}Tc$-DTPA ($^{99m}Tc$-DTPA를 이용한 사구체 여과율 측정에서 주사 전선량계수치의 평가)

  • Yeon, Joon-Ho;Lee, Hyuk;Chi, Yong-Ki;Kim, Soo-Yung;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.94-100
    • /
    • 2010
  • Purpose: We can evaluate function of kidney by Glomerular Filtration Rate (GFR) test using $^{99m}Tc$-DTPA which is simple. This test is influenced by several parameter such as net syringe count, kidney depth, corrected kidney count, acquisition time and characters of gamma camera. In this study, we evaluated predose count according to matrix size in the GFR test using $^{99m}Tc$-DTPA. Materials and Methods: Gamma camera of Infinia in GE was used, and LEGP collimator, three types of matrix size ($64{\times}64$, $128{\times}128$, $256{\times}256$) and 1.0 of zoom factor were applied. We increased radioactivity concentration from 222 (6), 296 (8), 370 (10), 444 (12) up to 518 MBq (14 mCi) respectively and acquired images according to matrix size at 30 cm distance from detector. Lastly, we evaluated these values and then substituted them for GFR formula. Results: In $64{\times}64$, $128{\times}128$ and $256{\times}256$ of matrix size, counts per second was 26.8, 34.5, 41.5, 49.1 and 55.3 kcps, 25.3, 33.4, 41.0, 48.4 and 54.3 kcps and 25.5, 33.7, 40.8, 48.1 and 54.7 kcps respectively. Total counts for 5 second were 134, 172, 208, 245 and 276 kcounts from $64{\times}64$, 127, 172, 205, 242, 271 kcounts from $128{\times}128$, and 137, 168, 204, 240 and 273 kcounts from $256{\times}256$, and total counts for 60 seconds were 1,503, 1,866, 2,093, 2,280, 2,321 kcounts, 1,511, 1,994, 2,453, 2,890 and 3,244 kcounts, and 1,524, 2,011, 2,439, 2,869 and 3,268 kcounts respectively. It is different from 0 to 30.02 % of percentage difference in $64{\times}64$ of matrix size. But in $128{\times}128$ and $256{\times}256$, it is showed 0.60 and 0.69 % of maximum value each. GFR of percentage difference in $64{\times}64$ represented 6.77% of 222 MBq (6 mCi), 42.89 % of 518 MBq (14 mCi) at 60 seconds respectively. However it is represented 0.60 and 0.63 % each in $128{\times}128$ and $256{\times}256$. Conclusion: There was no big difference in total counts of percentage difference and GFR values acquiring from $128{\times}128$ and $256{\times}256$ of matrix size. But in $64{\times}64$ of matrix size when the total count exceeded 1,500 kcounts, the overflow phenomenon was appeared differently according to predose radioactivity of concentration and acquisition time. Therefore, we must optimize matrix size and net syringe count considering the total count of predose to get accurate GFR results.

  • PDF

Performance Characteristics of 3D GSO PET/CT Scanner (Philips GEMINI PET/DT) (3차원 GSO PET/CT 스캐너(Philips GEMINI PET/CT의 특성 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Byeong-Il;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.318-324
    • /
    • 2004
  • Purpose: Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. Methods: GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals ($4{\times}6{\times}20$ mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window: $409[\sim}664$ keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter+random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Results: Transverse and axial resolutions at 1cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset from the center. Scatter fraction was 40.6%, and peak true count rate and NECR were 88.9 kcps @ 12.9 kBq/mL and 34.3 kcps @ 8.84 kBq/mL. These characteristics are better than that of ECAT EXACT PET scanner with BGO crystal. Conclusion: The results of this field test demonstrate high resolution, sensitivity and count rate performance of the 3D PET/CT scanner with GSO crystal. The data provided here will be useful for the comparative study with other 3D PET/CT scanners using BGO or LSO crystals.

A Study on Industries's Leading at the Stock Market in Korea - Gradual Diffusion of Information and Cross-Asset Return Predictability- (산업의 주식시장 선행성에 관한 실증분석 - 자산간 수익률 예측 가능성 -)

  • Kim Jong-Kwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.355-380
    • /
    • 2004
  • I test the hypothesis that the gradual diffusion of information across asset markets leads to cross-asset return predictability in Korea. Using thirty-six industry portfolios and the broad market index as our test assets, I establish several key results. First, a number of industries such as semiconductor, electronics, metal, and petroleum lead the stock market by up to one month. In contrast, the market, which is widely followed, only leads a few industries. Importantly, an industry's ability to lead the market is correlated with its propensity to forecast various indicators of economic activity such as industrial production growth. Consistent with our hypothesis, these findings indicate that the market reacts with a delay to information in industry returns about its fundamentals because information diffuses only gradually across asset markets. Traditional theories of asset pricing assume that investors have unlimited information-processing capacity. However, this assumption does not hold for many traders, even the most sophisticated ones. Many economists recognize that investors are better characterized as being only boundedly rational(see Shiller(2000), Sims(2201)). Even from casual observation, few traders can pay attention to all sources of information much less understand their impact on the prices of assets that they trade. Indeed, a large literature in psychology documents the extent to which even attention is a precious cognitive resource(see, eg., Kahneman(1973), Nisbett and Ross(1980), Fiske and Taylor(1991)). A number of papers have explored the implications of limited information- processing capacity for asset prices. I will review this literature in Section II. For instance, Merton(1987) develops a static model of multiple stocks in which investors only have information about a limited number of stocks and only trade those that they have information about. Related models of limited market participation include brennan(1975) and Allen and Gale(1994). As a result, stocks that are less recognized by investors have a smaller investor base(neglected stocks) and trade at a greater discount because of limited risk sharing. More recently, Hong and Stein(1999) develop a dynamic model of a single asset in which information gradually diffuses across the investment public and investors are unable to perform the rational expectations trick of extracting information from prices. Hong and Stein(1999). My hypothesis is that the gradual diffusion of information across asset markets leads to cross-asset return predictability. This hypothesis relies on two key assumptions. The first is that valuable information that originates in one asset reaches investors in other markets only with a lag, i.e. news travels slowly across markets. The second assumption is that because of limited information-processing capacity, many (though not necessarily all) investors may not pay attention or be able to extract the information from the asset prices of markets that they do not participate in. These two assumptions taken together leads to cross-asset return predictability. My hypothesis would appear to be a very plausible one for a few reasons. To begin with, as pointed out by Merton(1987) and the subsequent literature on segmented markets and limited market participation, few investors trade all assets. Put another way, limited participation is a pervasive feature of financial markets. Indeed, even among equity money managers, there is specialization along industries such as sector or market timing funds. Some reasons for this limited market participation include tax, regulatory or liquidity constraints. More plausibly, investors have to specialize because they have their hands full trying to understand the markets that they do participate in

  • PDF