• Title/Summary/Keyword: 업스케일링

Search Result 21, Processing Time 0.022 seconds

Hologram Super-Resolution Using a Single Reverse Inception-based Deep Learning (단일 Reverse Inception 기반의 딥러닝을 사용한 홀로그램 Super-Resolution)

  • Kim, Woo-Suk;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.208-209
    • /
    • 2019
  • 저해상도의 홀로그램을 Bilinear및 Bicubic 등의 알고리즘을 이용하여 업 스케일링을 하는 방법도 있다. 하지만, 홀로그램 데이터의 손실이 매우 크게 발생하며, 이로 인한 화질 저하가 발생하게 된다. 본 논문에서는 기존에 요구되던 파라미터와 연산량, 메모리를 대폭 감소시키면서도 준수한 성능을 보이는 RCI 구조를 제안한다. 제안한 네트워크 구조는 준수한 성능을 보이면서도 기존 2D 이미지에 대한 SISR 네트워크보다 더 빠르고 더 적은 메모리를 사용하였다.

  • PDF

Face Recognition using Image Super-Resolution (이미지 초해상화를 이용한 얼굴 인식)

  • Park, Junyoung;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.85-87
    • /
    • 2022
  • 최근 CCTV 출입 기록, 휴대폰 보안, 스마트 매장 등에서 얼굴 인식을 통해 개인을 식별하는 기술이 널리 사용되고 있다. 카메라의 각도, 조명, 사람의 움직임 등 얼굴 인식에 많은 외부 환경이 영향을 미치고 있지만 그중에서도 실제 영상에서 얼굴이 차지하는 영역이 작아 저해상도 얼굴 인식에 어려움을 겪고 있다. 이러한 문제점을 해결하고자 본 논문에서는 이미지 해상도가 얼굴 인식에 끼치는 영향을 알아보고 이미지 초해상화를 통해 얼굴 인식 성능을 개선하고자 한다. 쌍선형, 양3차 회선 보간법과 딥러닝 기반의 이미지 초해상화 모델인 RCAN을 이용하여 업스케일링한 데이터셋에 대해 학습한 ArcFace를 통해 얼굴 검증 평가를 진행하였다. 고해상도 이미지는 얼굴 인식 성능을 향상시키며, RCAN을 사용한 이미지 초해상화가 보간법을 사용한 방법보다 더 좋은 성능을 보였다.

  • PDF

An Efficient FPGA Based TDC Accelerator for Deconvolutional Neural Networks (효율적인 DCNN 연산을 위한 FPGA 기반 TDC 가속기)

  • Jang, Hyerim;Moon, Byungin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.457-458
    • /
    • 2021
  • 딥러닝 알고리즘 중 DCNN(DeConvolutional Neural Network)은 이미지 업스케일링과 생성·복원 등 다양한 분야에서 뛰어난 성능을 보여주고 있다. DCNN은 많은 양의 데이터를 병렬로 처리할 수 있기 때문에 하드웨어로 설계하는 것이 유용하다. 최근 DCNN의 하드웨어 구조 연구에서는 overlapping sum 문제를 해결하기 위해 deconvolution 필터를 convolution 필터로 변환하는 TDC(Transforming the Deconvolutional layer into the Convolutional layer) 알고리즘이 제안되었다. 하지만 TDC를 CPU(Central Processing Unit)로 수행하기 때문에 연산의 최적화가 어려우며, 외부 메모리를 사용하기에 추가적인 전력이 소모된다. 이에 본 논문에서는 저전력으로 구동할 수 있는 FPGA 기반 TDC 하드웨어 구조를 제안한다. 제안하는 하드웨어 구조는 자원 사용량이 적어 저전력으로 구동 가능할 뿐만 아니라, 병렬 처리 구조로 설계되어 빠른 연산 처리 속도를 보인다.

Effects of Fracture Tensor Component and First Invariant on Block Hydraulic Characteristics of the 2-D Discrete Fracture Network Systems (절리텐서의 성분 및 일차불변량이 2-D DFN 시스템의 블록수리전도 특성에 미치는 영향)

  • Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • In this study, the effects of fracture tensor component and first invariant on block hydraulic behaviors are evaluated in the 2-D DFN(discrete fracture network) systems. A series of regression analysis is performed between connected fracture tensor components and block hydraulic conductivities estimated at every $30^{\circ}$ hydraulic gradient directions for a total of 36 DFN systems having various joint density and size distribution. The directional block hydraulic conductivity seems to have strong relation with the fracture tensor component estimated in direction perpendicular to it. It is found that an equivalent continuum approach could be acceptable for the 2-D DFN systems under condition that the first invariant of fracture tensor is more than 2.0~2.5. The first invariant of fracture tensor seems highly correlated with average block hydraulic conductivity and can be used to evaluate hydraulic characteristics of the 2-D DFN systems. Also, a possibility of upscaling using the first invariant of fracture tensor for the DFN system is addressed through this study.

Hair and Fur Synthesizer via ConvNet Using Strand Geometry Images

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.85-92
    • /
    • 2022
  • In this paper, we propose a technique that can express low-resolution hair and fur simulations in high-resolution without noise using ConvNet and geometric images of strands in the form of lines. Pairs between low-resolution and high-resolution data can be obtained through physics-based simulation, and a low-resolution-high-resolution data pair is established using the obtained data. The data used for training is used by converting the position of the hair strands into a geometric image. The hair and fur network proposed in this paper is used for an image synthesizer that upscales a low-resolution image to a high-resolution image. If the high-resolution geometry image obtained as a result of the test is converted back to high-resolution hair, it is possible to express the elastic movement of hair, which is difficult to express with a single mapping function. As for the performance of the synthesis result, it showed faster performance than the traditional physics-based simulation, and it can be easily executed without knowing complex numerical analysis.

Analysis of Fine Particle Transfer and Shear Strength Increase Using PFC in Permeation Grouting (PFC를 이용한 침투그라우팅시 미세입자의 이동 및 전단강도증가 해석)

  • Lee, Wan-Ho;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.49-58
    • /
    • 2007
  • Numerical experiments using a distinct element code (PFC3D) were carried out for the analysis of grout-material transfer in soil layers and also for the analysis of increase in mechanical strength after permeation grouting. For rapid analysis, up-scaling analysis in length scale was adopted, and the following observations were made from the numerical experiments. Firstly, the relative size of grout material with respect to the in situ soil particles controlled the transfer distance of the grout particles. When the size of grout particle was 0.2 to 0.25 times of the in situ soil particles, clogging of pore spaces among the in situ soil particles occurred, resulting in restricted propagation of grout particles. It was also found that there was a threshold value in the size of grout particle. Below the threshold value, the transfer distance of the grout particle did not increase with the decrease of particle size of the grout material. Secondly, the increase in cohesion and internal friction angle was observed in the numerical specimen with grouting treatment, but not with the untreated specimen.

Comparison of Three Kinds of Methods on Estimation of Forest Carbon Stocks Distribution Using National Forest Inventory DB and Forest Type Map (국가산림자원조사 DB와 임상도를 이용한 산림탄소저장량 공간분포 추정방법 비교)

  • Kim, Kyoung-Min;Roh, Young-Hee;Kim, Eun-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.69-85
    • /
    • 2014
  • Carbon stocks of NFI plots can be accurately estimated using field survey information. However, an accurate estimation of carbon stocks in other unsurveyed sites is very difficult. In order to fill this gap, various spatial information can be used as an ancillary data. In South Korea, there is the 1:5,000 forest type map that was produced by digital air-photo interpretation and field survey. Because this map contains very detailed forest information, it can be used as the high-quality spatial data for estimating carbon stocks. In this study, we compared three upscaling methods based on the 1:5,000 forest type map and 5th national forest inventory data. Map algebra(method 1), RK(Regression Kriging)(method 2), and GWR(Geographically Weighted Regression)(method 3) were applied to estimate forest carbon stock in Chungcheong-nam Do and Daejeon metropolitan city. The range of carbon stocks from method 2(1.39~138.80 tonC/ha) and method 3(1.28~149.98 tonC/ha) were more similar to that of previous method(1.56~156.40 tonC/ha) than that of method 1(0.00~93.37 tonC/ha). This result shows that RK and GWR considering spatial autocorrelation can show spatial heterogeneity of carbon stocks. We carried out paired t-test for carbon stock data using 186 sample points to assess estimation accuracy. As a result, the average carbon stocks of method 2 and field survey method were not significantly different at p=0.05 using paired t-test. And the result of method 2 showed the lowest RMSE. Therefore regression kriging method is useful to consider spatial variations of carbon stocks distribution in rugged terrain and complex forest stand.

Review of Remote Sensing Technology for Forest Canopy Height Estimation and Suggestions for the Advancement of Korea's Nationwide Canopy Height Map (원격탐사기반 임분고 추정 모델 개발 국내외 현황 고찰 및 제언)

  • Lee, Boknam;Jung, Geonhwi;Ryu, Jiyeon;Kwon, Gyeongwon;Yim, Jong Su;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.435-449
    • /
    • 2022
  • Forest canopy height is an indispensable vertical structure parameter that can be used for understanding forest biomass and carbon storage as well as for managing a sustainable forest ecosystem. Plot-based field surveys, such as the national forest inventory, have been conducted to provide estimates of the forest canopy height. However, the comprehensive nationwide field monitoring of forest canopy height has been limited by its cost, lack of spatial coverage, and the inaccessibility of some forested areas. These issues can be addressed by remote sensing technology, which has gained popularity as a means to obtain detailed 2- and 3-dimensional measurements of the structure of the canopy at multiple scales. Here, we reviewed both international and domestic studies that have used remote sensing technology approaches to estimate the forest canopy height. We categorized and examined previous approaches as: 1) LiDAR approach, 2) Stereo or SAR image-based point clouds approach, and 3) combination approach of remote sensing data. We also reviewed upscaling approaches of utilizing remote sensing data to generate a continuous map of canopy height across large areas. Finally, we provided suggestions for further advancement of the Korean forest canopy height estimation system through the use of various remote sensing technologies.

A Study on Current Trends and Characteristics of Korean Unicorn Group (국내 유니콘 기업군의 실태분석과 특징에 관한 연구)

  • Kim, Juhee;Jung, Ae Rin;Kim, Sunwoo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.63-77
    • /
    • 2022
  • The importance of start-ups and venture companies in the Korean economy is growing. However, the successful growth of startups and venture companies are still challenging as 70% of startups fail within 5 years. A new perspective on innovation is essential to overcome the liability of newness and the liability of smallness in the existing market and obtain the competitive advantage. Recent phenomenon in the Korean startups ecosystem is the remarkable growth of unicorns and future unicorns. Their business models, types of business, and success cases serve as a good example. Neverthless, the process of unicorn and future unicorn startups making new industries and innovative business has poorly understood. In this paper, we first define 175 unicorns and future unicorn startups participating in the K-unicorn project as a unicorn group and analyze current trends of the group. Then the in-depth analyses of industry sectors are conducted. Specifically, focusing on the unicorn forming the new market, we examine the unicorn making the processes of industry category innovation through the business innovation model. Lastly, broadening the scope of the analysis to the unicorn group, policy implications in startups and venture ecosystem are suggested.

Comparison of Forest Carbon Stocks Estimation Methods Using Forest Type Map and Landsat TM Satellite Imagery (임상도와 Landsat TM 위성영상을 이용한 산림탄소저장량 추정 방법 비교 연구)

  • Kim, Kyoung-Min;Lee, Jung-Bin;Jung, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.449-459
    • /
    • 2015
  • The conventional National Forest Inventory(NFI)-based forest carbon stock estimation method is suitable for national-scale estimation, but is not for regional-scale estimation due to the lack of NFI plots. In this study, for the purpose of regional-scale carbon stock estimation, we created grid-based forest carbon stock maps using spatial ancillary data and two types of up-scaling methods. Chungnam province was chosen to represent the study area and for which the $5^{th}$ NFI (2006~2009) data was collected. The first method (method 1) selects forest type map as ancillary data and uses regression model for forest carbon stock estimation, whereas the second method (method 2) uses satellite imagery and k-Nearest Neighbor(k-NN) algorithm. Additionally, in order to consider uncertainty effects, the final AGB carbon stock maps were generated by performing 200 iterative processes with Monte Carlo simulation. As a result, compared to the NFI-based estimation(21,136,911 tonC), the total carbon stock was over-estimated by method 1(22,948,151 tonC), but was under-estimated by method 2(19,750,315 tonC). In the paired T-test with 186 independent data, the average carbon stock estimation by the NFI-based method was statistically different from method2(p<0.01), but was not different from method1(p>0.01). In particular, by means of Monte Carlo simulation, it was found that the smoothing effect of k-NN algorithm and mis-registration error between NFI plots and satellite image can lead to large uncertainty in carbon stock estimation. Although method 1 was found suitable for carbon stock estimation of forest stands that feature heterogeneous trees in Korea, satellite-based method is still in demand to provide periodic estimates of un-investigated, large forest area. In these respects, future work will focus on spatial and temporal extent of study area and robust carbon stock estimation with various satellite images and estimation methods.