Browse > Article
http://dx.doi.org/10.9708/jksci.2022.27.05.085

Hair and Fur Synthesizer via ConvNet Using Strand Geometry Images  

Kim, Jong-Hyun (School of Software Application, Kangnam University)
Abstract
In this paper, we propose a technique that can express low-resolution hair and fur simulations in high-resolution without noise using ConvNet and geometric images of strands in the form of lines. Pairs between low-resolution and high-resolution data can be obtained through physics-based simulation, and a low-resolution-high-resolution data pair is established using the obtained data. The data used for training is used by converting the position of the hair strands into a geometric image. The hair and fur network proposed in this paper is used for an image synthesizer that upscales a low-resolution image to a high-resolution image. If the high-resolution geometry image obtained as a result of the test is converted back to high-resolution hair, it is possible to express the elastic movement of hair, which is difficult to express with a single mapping function. As for the performance of the synthesis result, it showed faster performance than the traditional physics-based simulation, and it can be easily executed without knowing complex numerical analysis.
Keywords
Hair simulation; Fur simulation; Convolutional neural network; Physically based simulation; Strand geometry image;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ward, Kelly, Florence Bertails, Tae-Yong Kim, Stephen R. Marschner, Marie-Paule Cani, and Ming C. Lin. "A survey on hair modeling: Styling, simulation, and rendering." IEEE transactions on visualization and computer graphics 13, no. 2 (2007): 213-234. DOI: 10.1109/TVCG.2007.30.   DOI
2 Li, Yunzhu, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. "Learning particle dynamics for manipulating rigid bodies, deformable objects, and fluids." arXiv preprint arXiv:1810.01566 (2018).
3 Sanchez-Gonzalez, Alvaro, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, and Peter Battaglia. "Graph networks as learnable physics engines for inference and control." In International Conference on Machine Learning, pp. 4470-4479. PMLR, 2018.
4 Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016).
5 Battaglia, Peter, Razvan Pascanu, Matthew Lai, and Danilo Jimenez Rezende. "Interaction networks for learning about objects, relations and physics." Advances in neural information processing systems 29 (2016).
6 Chai, Menglei, Changxi Zheng, and Kun Zhou. "Adaptive skinning for interactive hair-solid simulation." IEEE transactions on visualization and computer graphics 23, no. 7 (2016): 1725-1738. DOI: 10.1109/TVCG.2016.2551242.   DOI
7 Dong, Chao, Chen Change Loy, Kaiming He, and Xiaoou Tang. "Image super-resolution using deep convolutional networks." IEEE transactions on pattern analysis and machine intelligence 38, no. 2 (2015): 295-307. DOI: 10.1109/TPAMI.2015.2439281   DOI
8 Muller, Matthias, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. "Position based dynamics." Journal of Visual Communication and Image Representation 18, no. 2 (2007): 109-118. DOI: 10.1007/978-3-319-08234-9_92-1.   DOI
9 Muller, Matthias, Tae-Yong Kim, and Nuttapong Chentanez. "Fast Simulation of Inextensible Hair and Fur." VRIPHYS 12 (2012): 39-44. DOI: 10.2312/PE/vriphys/vriphys12/039-044.   DOI
10 Hadap, Sunil, and Nadia Magnenat-Thalmann. "Modeling dynamic hair as a continuum." In Computer Graphics Forum, vol. 20, no. 3, pp. 329-338. Oxford, UK and Boston, USA: Blackwell Publishers Ltd, 2001. DOI: 10.1111/1467-8659.00525.   DOI
11 Kubiak, Blazej, Nico Pietroni, Fabio Ganovelli, and Marco Fratarcangeli. "A robust method for real-time thread simulation." In Proceedings of the 2007 ACM symposium on Virtual reality software and technology, pp. 85-88. 2007. DOI: 10.1145/1315184.1315198.   DOI
12 Bergou, Miklos, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. "Discrete viscous threads." ACM Transactions on graphics (TOG) 29, no. 4 (2010): 1-10. DOI: 10.1145/1833349.1778853.   DOI
13 Chang, Johnny T., Jingyi Jin, and Yizhou Yu. "A practical model for hair mutual interactions." In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 73-80. 2002. DOI: 10.1145/545261.545273   DOI
14 Kurihara, Tsuneya, Ken-ichi Anjyo, and Daniel Thalmann. "Hair animation with collision detection." In Models and Techniques in Computer Animation, pp. 128-138. Springer, Tokyo, 1993.
15 Daldegan, Agnes, Nadia Magnenat Thalmann, Tsuneya Kurihara, and Daniel Thalmann. "An integrated system for modeling, animating and rendering hair." In Computer Graphics Forum, vol. 12, no. 3, pp. 211-221. Edinburgh, UK: Blackwell Science Ltd, 1993. DOI: 10.1111/1467-8659.1230211   DOI
16 Chu, Mengyu, and Nils Thuerey. "Data-driven synthesis of smoke flows with CNN-based feature descriptors." ACM Transactions on Graphics (TOG) 36, no. 4 (2017): 1-14. DOI: 10.1145/3072959.3073643   DOI
17 Bertails, Florence, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frederic Leroy, and Jean-Luc Leveque. "Super-helices for predicting the dynamics of natural hair." ACM Transactions on Graphics (TOG) 25, no. 3 (2006): 1180-1187. DOI: 10.1145/1141911.1142012.   DOI
18 Chai, Menglei, Lvdi Wang, Yanlin Weng, Xiaogang Jin, and Kun Zhou. "Dynamic hair manipulation in images and videos." ACM Transactions on Graphics (TOG) 32, no. 4 (2013): 1-8. DOI: 10.1145/2461912.2461990.   DOI
19 Yuksel, Cem, Scott Schaefer, and John Keyser. "Hair meshes." ACM Transactions on Graphics (TOG) 28, no. 5 (2009): 1-7. DOI: 10.1145/1618452.1618512   DOI
20 Ladicky, L'ubor, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. "Data-driven fluid simulations using regression forests." ACM Transactions on Graphics (TOG) 34, no. 6 (2015): 1-9. DOI: 10.1145/2816795.2818129   DOI
21 Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. "Neural message passing for quantum chemistry." In International conference on machine learning, pp. 1263-1272. PMLR, 2017.
22 Yang, Cheng, Xubo Yang, and Xiangyun Xiao. "Data-driven projection method in fluid simulation." Computer Animation and Virtual Worlds 27, no. 3-4 (2016): 415-424. DOI: 10.1002/cav.1695   DOI
23 Tompson, Jonathan, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. "Accelerating eulerian fluid simulation with convolutional networks." In International Conference on Machine Learning, pp. 3424-3433. PMLR, 2017.
24 Um, Kiwon, Xiangyu Hu, and Nils Thuerey. "Liquid splash modeling with neural networks." In Computer Graphics Forum, vol. 37, no. 8, pp. 171-182. 2018. DOI: 10.1111/cgf.13522   DOI
25 Li, Yujia, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. "Gated graph sequence neural networks." arXiv preprint arXiv:1511.05493 (2015).
26 Iben, Hayley, Mark Meyer, Lena Petrovic, Olivier Soares, John Anderson, and Andrew Witkin. "Artistic simulation of curly hair." In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 63-71. 2013. DOI: 10.1145/2485895.2485913   DOI
27 Lee, Minjae, David Hyde, Michael Bao, and Ronald Fedkiw. "A skinned tetrahedral mesh for hair animation and hair-water interaction." IEEE transactions on visualization and computer graphics 25, no. 3 (2018): 1449-1459. DOI:10.1109/TVCG.2018.2808972.   DOI
28 Nealen, Andrew, Matthias Muller, Richard Keiser, Eddy Boxerman, and Mark Carlson. "Physically based deformable models in computer graphics." In Computer graphics forum, vol. 25, no. 4, pp. 809-836. Oxford, Blackwell Publishing Ltd, 2006. DOI: 10.1111/j.1467-8659.2006.01000.x.   DOI
29 Selle, Andrew, Michael Lentine, and Ronald Fedkiw. "A mass spring model for hair simulation." In ACM SIGGRAPH 2008 papers, pp. 1-11. 2008. DOI: 10.1145/1360612.1360663.   DOI
30 Xiao, Xiao, Shang Zhao, Yan Meng, Lamia Soghier, Xiaoke Zhang, and James Hahn. "A physics-based virtual reality simulation framework for neonatal endotracheal intubation." In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 557-565, 2020. DOI: 10.1109/VR46266.2020.00077   DOI
31 Wu, Jiajun, Ilker Yildirim, Joseph J. Lim, Bill Freeman, and Josh Tenenbaum. "Galileo: Perceiving physical object properties by integrating a physics engine with deep learning." Advances in neural information processing systems 28 (2015).
32 Fragkiadaki, Katerina, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. "Learning visual predictive models of physics for playing billiards." arXiv preprint arXiv:1511.07404 (2015).
33 Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. "The graph neural network model." IEEE transactions on neural networks 20, no. 1 (2008): 61-80. DOI: 10.1109/TNN.2008.2005605   DOI
34 Battaglia, Peter W., Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti et al. "Relational inductive biases, deep learning, and graph networks." arXiv preprint arXiv:1806.01261(2018).
35 Bergou, Miklos, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. "Discrete elastic rods." In ACM SIGGRAPH 2008 papers, pp. 1-12. 2008. DOI: 10.1145/1399504.1360662.   DOI
36 Bertails, Florence. "Linear time super-helices." In Computer graphics forum, vol. 28, no. 2, pp. 417-426. Oxford, UK: Blackwell Publishing Ltd, 2009. DOI : 10.1111/j.1467-8659.2009.01381.x.   DOI
37 Mottaghi, Roozbeh, Mohammad Rastegari, Abhinav Gupta, and Ali Farhadi. ""What happens if..." Learning to Predict the Effect of Forces in Images." In European conference on computer vision, pp. 269-285. Springer, Cham, 2016. DOI: 10.1007/978-3-319-46493-0_17   DOI
38 Ummenhofer, Benjamin, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. "Lagrangian fluid simulation with continuous convolutions." In International Conference on Learning Representations. 2019.