• 제목/요약/키워드: 업샘플링

Search Result 77, Processing Time 0.039 seconds

Depth Upsampler Using Color and Depth Weight (색상정보와 깊이정보 가중치를 이용한 깊이영상 업샘플러)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.431-438
    • /
    • 2016
  • In this paper, we present an upsampling technique for depth map image using color and depth weights. First, we construct a high-resolution image using the bilinear interpolation technique. Next, we detect a common edge region using RGB color space, HSV color space, and depth image. If an interpolated pixel belongs to the common edge region, we calculate weighting values of color and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

Single Image Super-Resolution Using CARDB Based on Iterative Up-Down Sampling Architecture (CARDB를 이용한 반복적인 업-다운 샘플링 네트워크 기반의 단일 영상 초해상도 복원)

  • Kim, Ingu;Yu, Songhyun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.242-251
    • /
    • 2020
  • Recently, many deep convolutional neural networks for image super-resolution have been studied. Existing deep learning-based super-resolution algorithms are architecture that up-samples the resolution at the end of the network. The post-upsampling architecture has an inefficient structure at large scaling factor result of predicting a lot of information for mapping from low-resolution to high-resolution at once. In this paper, we propose a single image super-resolution using Channel Attention Residual Dense Block based on an iterative up-down sampling architecture. The proposed algorithm efficiently predicts the mapping relationship between low-resolution and high-resolution, and shows up to 0.14dB performance improvement and enhanced subjective image quality compared to the existing algorithm at large scaling factor result.

Depth Map Enhancement and Up-sampling Techniques of 3D Images for the Smart Media (스마트미디어를 위한 입체 영상의 깊이맵 화질 향상 및 업샘플링 기술)

  • Jung, Jae-Il;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • As the smart media becomes more popular, the demand for high-quality 3D images and depth maps is increasing. However, performance of the current technologies to acquire depth maps is not sufficient. The depth maps from stereo matching methods have low accuracy in homogeneous regions. The depth maps from depth cameras are noisy and have low-resolution due to technical limitations. In this paper, we introduce the state-of-the-art algorithms for depth map enhancement and up-sampling from conventional methods using only depth maps to the latest algorithms referring to both depth maps and their corresponding color images. We also present depth map enhancement algorithms for hybrid camera systems in detail.

  • PDF

An Improved Recognition Technique for Bar Code Images Using Upsampling (업샘플링을 통한 바코드 이미지 인식 성능 개선)

  • Ahn, Heejune;Do, Thanh Tuan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.911-913
    • /
    • 2016
  • Recently barcode detection using a camera is popular, but the recognition performance is low at the effectively low-resolution. The paper propose sub-pixel synchronization technique for better recognition performance. The experiments with ITF-18 demonstrates its performance gain (66% for CIF, 100% for VGA) against the existing recognition algorithms.

Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map (깊이맵 업샘플링을 이용한 객관적 메트릭과 3D 평가의 비교)

  • Mahmoudpou, Saeed;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.156-157
    • /
    • 2014
  • 본 논문에서는 깊이맵 업샘플링을 이용하여 객관적 메트릭과 3D 주관적 평가 사이의 관계를 조사한다. 전자의 경우, 다양한 참조(full-reference) 및 무참조(no-reference) 평가도구가 깊이맵의 품질을 측정하기위해 적용되고, 3D평가는 주관적 평가로 얻는다. 이 두 개의 결과는 세 가지의 상관계수를 이용하여 상호 관련성을 찾은 후에, 최적으로 주관평가에 근접한 객관적 메트릭을 얻는다.

  • PDF

Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map (깊이맵 업샘플링을 이용한 객관적 메트릭과 3D 평가의 비교)

  • Mahmoudpour, Saeed;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.204-214
    • /
    • 2015
  • Depth map upsampling is an approach to increase the spatial resolution of depth maps obtained from a depth camera. Depth map quality is closely related to 3D perception of stereoscopic image, multi-view image and holography. In general, the performance of upsampled depth map is evaluated by PSNR (Peak Signal to Noise Ratio). On the other hand, time-consuming 3D subjective tests requiring human subjects are carried out for examining the 3D perception as well as visual fatigue for 3D contents. Therefore, if an objective metric is closely correlated with a subjective test, the latter can be replaced by the objective metric. For this, this paper proposes a best metric by investigating the relationship between diverse objective metrics and 3D subjective tests. Diverse reference and no-reference metrics are adopted to evaluate the performance of upsampled depth maps. The subjective test is performed based on DSCQS test. From the utilization and analysis of three kinds of correlations, we validated that SSIM and Edge-PSNR can replace the subjective test.

Improved Semantic Segmentation in Multi-modal Network Using Encoder-Decoder Feature Fusion (인코더-디코더 사이의 특징 융합을 통한 멀티 모달 네트워크의 의미론적 분할 성능 향상)

  • Sohn, Chan-Young;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.81-83
    • /
    • 2018
  • Fully Convolutional Network(FCN)은 기존의 방법보다 뛰어난 성능을 보였지만, FCN은 RGB 정보만을 사용하기 때문에 세밀한 예측이 필요한 장면에서는 다소 부족한 성능을 보였다. 이를 해결하기 위해 인코더-디코더 구조를 이용하여 RGB와 깊이의 멀티 모달을 활용하기 위한 FuseNet이 제안되었다. 하지만, FuseNet에서는 RGB와 깊이 브랜치 사이의 융합은 있지만, 인코더와 디코더 사이의 특징 지도를 융합하지 않는다. 본 논문에서는 FCN의 디코더 부분의 업샘플링 과정에서 이전 계층의 결과와 2배 업샘플링한 결과를 융합하는 스킵 레이어를 적용하여 FuseNet의 모달리티를 잘 활용하여 성능을 개선했다. 본 실험에서는 NYUDv2와 SUNRGBD 데이터 셋을 사용했으며, 전체 정확도는 각각 77%, 65%이고, 평균 IoU는 47.4%, 26.9%, 평균 정확도는 67.7%, 41%의 성능을 보였다.

  • PDF

Adaptive Inter-layer Filter Selection Mechanism for Improved Scalable Extensions of High Efficiency Video Coding (SHVC) (스케일러블 HEVC 부호화 효율 개선을 위한 계층 간 적응적 필터 선택 알고리즘)

  • Lee, Jong-Hyeok;Kim, Byung-Gyu
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.141-147
    • /
    • 2017
  • Scalable extension of High Efficiency Video Coding (SHVC) standard uses the up-sampled residual data from the base layer to make a residual data in the enhancement layer. This paper describes an efficient algorithm for improving coding gain by using the filtered residual signal of base layer in the Scalable extension of High Efficiency Video Coding (SHVC). The proposed adaptive filter selection mechanism uses the smoothing and sharpening filters to enhance the quality of inter-layer prediction. Based on two filters and the existing up-sampling filter, a rate-distortion (RD)-cost fuction-based competitive scheme is proposed to get better quality of video. Experimental results showed that average BD-rate gains of 1.5%, 2.1%, and 1.7% for Y, U and V components, respectively, were achieved, compared with SHVC reference software 5.0, which is based on HEVC reference model (HM) 13.

A Robust Depth Map Upsampling Against Camera Calibration Errors (카메라 보정 오류에 강건한 깊이맵 업샘플링 기술)

  • Kim, Jae-Kwang;Lee, Jae-Ho;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.8-17
    • /
    • 2011
  • Recently, fusion camera systems that consist of depth sensors and color cameras have been widely developed with the advent of a new type of sensor, time-of-flight (TOF) depth sensor. The physical limitation of depth sensors usually generates low resolution images compared to corresponding color images. Therefore, the pre-processing module, such as camera calibration, three dimensional warping, and hole filling, is necessary to generate the high resolution depth map that is placed in the image plane of the color image. However, the result of the pre-processing step is usually inaccurate due to errors from the camera calibration and the depth measurement. Therefore, in this paper, we present a depth map upsampling method robust these errors. First, the confidence of the measured depth value is estimated by the interrelation between the color image and the pre-upsampled depth map. Then, the detailed depth map can be generated by the modified kernel regression method which exclude depth values having low confidence. Our proposed algorithm guarantees the high quality result in the presence of the camera calibration errors. Experimental comparison with other data fusion techniques shows the superiority of our proposed method.