• Title/Summary/Keyword: 얼굴.사람 이미지

Search Result 100, Processing Time 0.027 seconds

Affective conceptual components of facial beauty (아름다운 얼굴의 감성적 구성 개념)

  • 김한경;박수진;정찬섭
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.342-347
    • /
    • 2002
  • 한국인 20대 여성 얼굴을 대표하는 30개 얼굴의 감성 형용사 평정을 통해 아름다운 얼굴의 감성 특징을 파악하였다. 얼굴 감성을 나타내는 14개 형용사 평정에 대해 주성분 분석을 실시한 결과 얼굴 감성은 샤프 요인과 소프트 요인으로 나뉘며, 사람들이 소프트한 느낌보다 샤프한 느낌을 지닌 얼굴을 더 아름답다고 느끼는 것으로 나타났다. 아름다운 얼굴의 감성 특징 검증을 위해 얼굴 합성법을 이용하여 합성한 이미지에 대해 얼굴 미모와 감성 형용사 평정을 실시하였다. '상위 평균' 이미지는 '전체 평균' 이미지보다, 전체 평균과 상위 평균의 얼굴 특징 차이를 50% 과장한 '상위+50' 이미지는 '상위 평균' 이미지보다 유의미하게 더 아름다운 것으로 평정되었다. 합성 얼굴의 감성 평정 결과 '전체 평균' 이미지는 소프트 감성에서 높은 평정을 받았으며, '상위 평균' 이미지는 샤프 감성, '상위150'이미지는 두 감성 요인을 모두 지니는 것으로 나타났다. 이러한 결과는 샤프 혹은 소프트 중 하나의 감성 요인이 두드러진 얼굴보다 두 가지 감성 요인 모두에서 높은 평정을 받은 얼굴을 더욱 아름답다고 지각하는 것을 암시한다.

  • PDF

Face Recognition using Image Super-Resolution (이미지 초해상화를 이용한 얼굴 인식)

  • Park, Junyoung;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.85-87
    • /
    • 2022
  • 최근 CCTV 출입 기록, 휴대폰 보안, 스마트 매장 등에서 얼굴 인식을 통해 개인을 식별하는 기술이 널리 사용되고 있다. 카메라의 각도, 조명, 사람의 움직임 등 얼굴 인식에 많은 외부 환경이 영향을 미치고 있지만 그중에서도 실제 영상에서 얼굴이 차지하는 영역이 작아 저해상도 얼굴 인식에 어려움을 겪고 있다. 이러한 문제점을 해결하고자 본 논문에서는 이미지 해상도가 얼굴 인식에 끼치는 영향을 알아보고 이미지 초해상화를 통해 얼굴 인식 성능을 개선하고자 한다. 쌍선형, 양3차 회선 보간법과 딥러닝 기반의 이미지 초해상화 모델인 RCAN을 이용하여 업스케일링한 데이터셋에 대해 학습한 ArcFace를 통해 얼굴 검증 평가를 진행하였다. 고해상도 이미지는 얼굴 인식 성능을 향상시키며, RCAN을 사용한 이미지 초해상화가 보간법을 사용한 방법보다 더 좋은 성능을 보였다.

  • PDF

Couple Matching Platform through Style Analysis (스타일 분석을 통한 커플 매칭 플랫폼)

  • Choe, Hyeong Rak;Jo, Sung un;Kim, Dong Ha;Moon, Jae Hyun
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.868-871
    • /
    • 2019
  • 본연구는 커플들의 이미지 빅 데이터를 분석하여 각각 얼굴과 패션에 따라 유사한 유형 끼리 클러스터링 하여 새로운 사람 이미지가 주어졌을 때 해당 사람이 어느 유형에 속하는지 찾아내고 해당 유형의 사람들은 어떤 유형의 이성과 잘 맞는지 찾아 추천해주는 플랫폼이다. 빅 데이터를 수집하기 위하여 SNS상에서 커플들의 이미지를 크롤링하여 저장한다. 수집된 커플들의 이미지를 AI 머신 러닝으로 나이, 성별을 분석하여 미리 설정한 나이대의 이성 커플들의 이미지 만을 추려내서 각각 남, 여의 이미지를 분리하여 저장한다. 해당 이미지들로 비슷한 얼굴, 패션 유형의 사람들을 같은 클러스터로 모으고 CNN 으로 학습 시켜서 새로운 이미지가 들어올 경우 효율적으로 해당 이미지가 어느 클러스터에 속하는지 찾아낼 수 있도록 한다. 특정 이미지가 속하는 클러스터를 찾아내면 해당 클러스터에 속하는 사람들의 연인들이 어느 클러스터에 가장 많이 포함되어 있는지 찾아서 해당 클러스터 유형의 이성을 추천해준다. 웹과 어플리케이션으로 이루어진 플랫폼 서비스이며, 커플 매칭 기능 뿐만 아니라 매칭된 회원 간 연락 기능, 실제 커플의 이미지로 두 사람의 매칭도 확인 등의 부가적 기능 또한 인공 지능 서비스로 제공된다.

Multi-Resolution using Gabor Wavelet for Efficiency Face Recognition (효율적인 다 해상도 얼굴 인식을 위한 가보 웨이블릿 연구)

  • 정원구;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.745-747
    • /
    • 2004
  • 본 논문에서는 여러 해상도로 입력되어지는 얼굴 이미지를 효율적으로 인식시키는 작업을 수행하는 방법에 대한 내용을 소개하고 있다. 정해지지 않은 예측이 불가능한 사람들이 드나드는 공공장소인 공항이나 항만 같은 곳에서의 얼굴인식은 고정된 크기가 아닌 다양한 크기와 조명을 갖는 등, 매우 많은 가지 수의 환경 변수를 가지고 있다. 이러한 환경에서의 얼굴인식은 그만큼 다양한 변수와 그 변수의 조건에 대한 대응을 요구하게 된다. 여기서 제안하는 방법은 다양한 해상도를 갖는 입력 얼굴 이미지에 대하여 최적의 가보 커널과 그에 따르는 적절한 파라미터를 찾는 것으로 효과적인 얼굴인식을 수행하는 방법을 제안한다.

  • PDF

Face Feature Extraction for Automatic Character Creation (캐릭터의 자동 생성을 위한 얼굴에서의 특징 추출)

  • 정종률;정승도;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.161-164
    • /
    • 2001
  • 캐릭터의 자동 생성이란 영상처리 기법을 이용하여 사람의 얼굴에서 특징을 추출하고, 이 특징들을 기반으로 독특한 캐릭터를 자동으로 얻어내는 방법을 의미한다. 본 논문에서는 사람마다의 얼굴의 특성에 기반한 캐릭터를 자동으로 생성하기 위하여 얼굴의 각 구성요소들의 특징을 효과적으로 추출하기 위한 방법을 제시한다. 얼굴을 구성하는 각각의 요소들의 특징을 추출하고, 추출된 특징을 바탕으로 각 구성요소에 해당하는 데이터베이스를 검색하여 특징을 잘 표현할 수 있는 그림을 선택한다. 최종적으로 선택된 그림들은 원 이미지의 비율에 맞도록 재구성하여 얼굴 캐릭터를 생성한다.

  • PDF

Realistic 3-dimensional using computer graphics Expression of Human illustrations (컴퓨터그래픽스를 이용한 사실적인 3D 인물 일러스트레이션의 표현)

  • Kim, Hoon
    • Archives of design research
    • /
    • v.19 no.1 s.63
    • /
    • pp.79-88
    • /
    • 2006
  • A human face figure is a visual symbol of identity. Each different face per person is a critical information differentiating each person from others and it directly relates to individual identity. When we look back human history, historical change of recognition for a face led to the change of expression and communication media and it in turn caused many changes in expressing a face. However, there has not been no time period when people pay attention to a face more than this time. Technically, the advent of computer graphics opened new turning point in expressing human face figure. Especially, a visual image which can be produced, saved, and transferred in digital has no limitation in time and space, and its importance in communication is getting higher and higher. Among those visual image information, a face image in digital is getting more applications. Therefore, 3d (3-dimensional) expression of a face using computer graphics can be easily produced without any professional techniques, just like assembling puzzle parts composed of the shape of each part ands texture map, etc. This study presents a method with which a general visual designer can effectively express 3d type face by studying each producing step of 3d face expression and by visualizing case study based on the above-mentioned study result.

  • PDF

Smart Mirror for Facial Expression Recognition Based on Convolution Neural Network (컨볼루션 신경망 기반 표정인식 스마트 미러)

  • Choi, Sung Hwan;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.200-203
    • /
    • 2021
  • This paper introduces a smart mirror technology that recognizes a person's facial expressions through image classification among several artificial intelligence technologies and presents them in a mirror. 5 types of facial expression images are trained through artificial intelligence. When someone looks at the smart mirror, the mirror recognizes my expression and shows the recognized result in the mirror. The dataset fer2013 provided by kaggle used the faces of several people to be separated by facial expressions. For image classification, the network structure is trained using convolution neural network (CNN). The face is recognized and presented on the screen in the smart mirror with the embedded board such as Raspberry Pi4.

  • PDF

실시간 영상에서의 휴먼 검출 및 얼굴 분류

  • Kim, Geon-Woo;Nam, Mi-Young;Han, Jong-Wook
    • Review of KIISC
    • /
    • v.20 no.3
    • /
    • pp.48-57
    • /
    • 2010
  • 본 고는 휴먼 객체 검출 및 분류를 위한 것으로서, 입력된 동영상에서 배경 이미지와의 차분 영상을 통해 객체 영역을 검출하고, 검출된 객체 영역에서 얼굴 즉 헤드 영역을 검출하는 방법에 대해서 설명한다. 실시간으로 녹화된 동영상에서 사람이 움직이는 위치와, 크기 등이 아주 다양하며, 또한 한 사람이 아닌 여러 사람 객체를 검출하기 위하여 다중의 사람객체 검출기를 이용한 캐스케이드 사람 객체 추출 방법을 제안한다. 얼굴 크기 등을 고려하여 헤드 영역의 shape 를 기반으로 하여 1차 검출을 수행하고, 검출되지 않은 영역에 대하여 히스토그램 기반의 얼굴 영역을 검출한다. 또한 중복된 영상에 대해 베이지안 얼굴 검출기를 통해 인증함으로써 성능을 향상시킬 수 있다.

Caricaturing using Local Warping and Edge Detection (로컬 와핑 및 윤곽선 추출을 이용한 캐리커처 제작)

  • Choi, Sung-Jin;Kim, Sung-Sin;Bae, Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.137-140
    • /
    • 2003
  • 캐리커처의 일반적인 의미는 어떤 사람이나 사물의 특징을 추출하여 익살스럽게 풍자한 그림이나 글이다. 다시 말해, 캐리커처는 사람의 얼굴에서 특징을 잡아 과장하거나 왜곡하여 그린 데생이라고 한다. 컴퓨터를 이용한 기존의 캐리커처 제작방법으로는, 입력 이미지 좌표의 통계적인 차이값을 이용하는 PICASSO System 방법[1], 제작자의 애매한 느낌을 퍼지 논리를 이용하여 표현하는 방법, 이미지를 와핑하는 방법, 여러 단계의 벡터 필드 변환을 이용하는 방법등이 연구되어 왔다. 본 논문에서는 실시간 또는 준비된 영상을 입력으로 받아 저장한 후, 네 단계의 과정으로 처리한 후 최종적으로 캐리커처된 이미지를 생성하게 된다. 각 단계별 처리 내용으로는 첫번째 단계에서는 영상에서 얼굴을 검출하고 두번째 단계에서는 특정 얼굴부위의 기하학적 정보를 좌표값으로 추출한다. 세번째 단계에서는 전 단계에서 얻은 좌표값으로 로컬 와핑 기법을 이용하여 영상을 변환한다. 네 번째 단계에서는 변형된 영상으로 퍼지 논리를 이용하여 보다 개선된 윤곽선 이미지로 변환하여 캐리커처 이미지를 얻는다. 본 논문에서는 영상 인식, 변환 및 윤곽선 검출 및 둥의 여러 가지 영상 처리 기법을 이용하여 기존의 캐리커처 제작 방식보다 간단하고, 복잡한 연산 과정이 없는 캐리커처 제작 시스템을 구현하였다.

  • PDF

Human Pose Estimation from Spherical Panorama Image (구면 파노라마 영상으로부터 사람의 자세 추정)

  • Im, Ye-Seul;Park, Jong-Seung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.952-955
    • /
    • 2021
  • 사람의 자세는 구면 파노라마에서 다양한 형태로 왜곡되어 나타날 수 있다. 따라서 구면 파노라마에서의 자세 추정은 평면 이미지에서의 경우보다 정확도가 떨어진다. 본 논문에서는 인식률이 높은 얼굴 인식 기법을 도입하여 구면 파노라마 영상에서 안정적으로 사람의 자세를 추정하는 방법을 제시한다. 먼저 구면 파노라마에서 얼굴을 인식한 후에 이에 기반하여 사람의 전신 영역을 추정하고 전신 영역을 포함하는 평면 영상을 획득한다. 획득된 평면 영상에서 자세를 추정하여 스켈레톤을 얻고 이를 캐릭터 모델에 적용한다. 제안 방법을 실영상에 적용하여 실험한 결과 평면 이미지에서와 동일한 수준의 정확도를 보임을 확인하였다.