한국인 20대 여성 얼굴을 대표하는 30개 얼굴의 감성 형용사 평정을 통해 아름다운 얼굴의 감성 특징을 파악하였다. 얼굴 감성을 나타내는 14개 형용사 평정에 대해 주성분 분석을 실시한 결과 얼굴 감성은 샤프 요인과 소프트 요인으로 나뉘며, 사람들이 소프트한 느낌보다 샤프한 느낌을 지닌 얼굴을 더 아름답다고 느끼는 것으로 나타났다. 아름다운 얼굴의 감성 특징 검증을 위해 얼굴 합성법을 이용하여 합성한 이미지에 대해 얼굴 미모와 감성 형용사 평정을 실시하였다. '상위 평균' 이미지는 '전체 평균' 이미지보다, 전체 평균과 상위 평균의 얼굴 특징 차이를 50% 과장한 '상위+50' 이미지는 '상위 평균' 이미지보다 유의미하게 더 아름다운 것으로 평정되었다. 합성 얼굴의 감성 평정 결과 '전체 평균' 이미지는 소프트 감성에서 높은 평정을 받았으며, '상위 평균' 이미지는 샤프 감성, '상위150'이미지는 두 감성 요인을 모두 지니는 것으로 나타났다. 이러한 결과는 샤프 혹은 소프트 중 하나의 감성 요인이 두드러진 얼굴보다 두 가지 감성 요인 모두에서 높은 평정을 받은 얼굴을 더욱 아름답다고 지각하는 것을 암시한다.
최근 CCTV 출입 기록, 휴대폰 보안, 스마트 매장 등에서 얼굴 인식을 통해 개인을 식별하는 기술이 널리 사용되고 있다. 카메라의 각도, 조명, 사람의 움직임 등 얼굴 인식에 많은 외부 환경이 영향을 미치고 있지만 그중에서도 실제 영상에서 얼굴이 차지하는 영역이 작아 저해상도 얼굴 인식에 어려움을 겪고 있다. 이러한 문제점을 해결하고자 본 논문에서는 이미지 해상도가 얼굴 인식에 끼치는 영향을 알아보고 이미지 초해상화를 통해 얼굴 인식 성능을 개선하고자 한다. 쌍선형, 양3차 회선 보간법과 딥러닝 기반의 이미지 초해상화 모델인 RCAN을 이용하여 업스케일링한 데이터셋에 대해 학습한 ArcFace를 통해 얼굴 검증 평가를 진행하였다. 고해상도 이미지는 얼굴 인식 성능을 향상시키며, RCAN을 사용한 이미지 초해상화가 보간법을 사용한 방법보다 더 좋은 성능을 보였다.
본연구는 커플들의 이미지 빅 데이터를 분석하여 각각 얼굴과 패션에 따라 유사한 유형 끼리 클러스터링 하여 새로운 사람 이미지가 주어졌을 때 해당 사람이 어느 유형에 속하는지 찾아내고 해당 유형의 사람들은 어떤 유형의 이성과 잘 맞는지 찾아 추천해주는 플랫폼이다. 빅 데이터를 수집하기 위하여 SNS상에서 커플들의 이미지를 크롤링하여 저장한다. 수집된 커플들의 이미지를 AI 머신 러닝으로 나이, 성별을 분석하여 미리 설정한 나이대의 이성 커플들의 이미지 만을 추려내서 각각 남, 여의 이미지를 분리하여 저장한다. 해당 이미지들로 비슷한 얼굴, 패션 유형의 사람들을 같은 클러스터로 모으고 CNN 으로 학습 시켜서 새로운 이미지가 들어올 경우 효율적으로 해당 이미지가 어느 클러스터에 속하는지 찾아낼 수 있도록 한다. 특정 이미지가 속하는 클러스터를 찾아내면 해당 클러스터에 속하는 사람들의 연인들이 어느 클러스터에 가장 많이 포함되어 있는지 찾아서 해당 클러스터 유형의 이성을 추천해준다. 웹과 어플리케이션으로 이루어진 플랫폼 서비스이며, 커플 매칭 기능 뿐만 아니라 매칭된 회원 간 연락 기능, 실제 커플의 이미지로 두 사람의 매칭도 확인 등의 부가적 기능 또한 인공 지능 서비스로 제공된다.
본 논문에서는 여러 해상도로 입력되어지는 얼굴 이미지를 효율적으로 인식시키는 작업을 수행하는 방법에 대한 내용을 소개하고 있다. 정해지지 않은 예측이 불가능한 사람들이 드나드는 공공장소인 공항이나 항만 같은 곳에서의 얼굴인식은 고정된 크기가 아닌 다양한 크기와 조명을 갖는 등, 매우 많은 가지 수의 환경 변수를 가지고 있다. 이러한 환경에서의 얼굴인식은 그만큼 다양한 변수와 그 변수의 조건에 대한 대응을 요구하게 된다. 여기서 제안하는 방법은 다양한 해상도를 갖는 입력 얼굴 이미지에 대하여 최적의 가보 커널과 그에 따르는 적절한 파라미터를 찾는 것으로 효과적인 얼굴인식을 수행하는 방법을 제안한다.
캐릭터의 자동 생성이란 영상처리 기법을 이용하여 사람의 얼굴에서 특징을 추출하고, 이 특징들을 기반으로 독특한 캐릭터를 자동으로 얻어내는 방법을 의미한다. 본 논문에서는 사람마다의 얼굴의 특성에 기반한 캐릭터를 자동으로 생성하기 위하여 얼굴의 각 구성요소들의 특징을 효과적으로 추출하기 위한 방법을 제시한다. 얼굴을 구성하는 각각의 요소들의 특징을 추출하고, 추출된 특징을 바탕으로 각 구성요소에 해당하는 데이터베이스를 검색하여 특징을 잘 표현할 수 있는 그림을 선택한다. 최종적으로 선택된 그림들은 원 이미지의 비율에 맞도록 재구성하여 얼굴 캐릭터를 생성한다.
사람의 얼굴은 정체성의 시각적 상징이다. 사람마다 각기 다른 얼굴 모습은 타인과 구별할 수 있도록 하는 중요한 역할을 하면서 개인의 정체성과 직결된다. 역사적으로 볼 때 얼굴에 대한 시대적 인식의 변화와 함께 표현매체와 커뮤니케이션매체가 다양해지고 발전함에 따라 얼굴을 표현하는 것에도 많은 변화가 있었다. 그러나 지금처럼 얼굴에 대한 사람들의 관심과 주목이 컸던 적이 없었다. 기술적으로는 컴퓨터그래픽스의 등장으로 얼굴표현의 새로운 전기를 맞이하게 되었다. 특히 시각 이미지들이 디지털형태로 제작, 저장, 전송할 수 있게 되어 시간적, 공간적제약이 없어지면서 시각이미지정보는 커뮤니케이션에서 그 비중이 전보다 더 커지고 있다. 그 중에서 디지털로 만들어진 얼굴 이미지는 그 활용도가 점차 확대되고 있다. 이에 따라 컴퓨터그래픽스를 이용한 얼굴의 3d (3-dimensional) 표현은 수년전부터 얼굴 각 부분의 형태와 텍스추어 맵 등 각 요소들을 필요할 때 마치 퍼즐 조각처럼 조립해서 전문적인 기술이 없이도 손쉽게 표현할 수 있게 되었다. 본 연구에서는 3d 얼굴표현의 제작단계별 내용을 연구하고 그 결과를 바탕으로 케이스 스터디에서 시각화함으로써 3d 전문가가 아닌 일반 시각디자이너들이 3d 형태의 얼굴을 효과적으로 표현하는 방법을 연구한다.
본 논문은 여러 인공지능 기술 중 이미지 분류를 통한 사람의 얼굴 표정을 인식하는 프로그램을 통해 사람의 표정을 인식하여 거울에 나타내는 스마트미러 기술을 소개한다. 여러 사람의 5가지 표정이미지를 통하여 인공지능으로 학습하였고, 사람이 거울을 볼 때 거울이 그 표정을 인식하여 인식한 결과를 거울에 나타내는 방식이다. 여러 사람의 얼굴을 표정별로 구분되어있는 dataset을 kaggle에서 제공하는 fer2013을 이용하여 사용하였고, 이미지 데이터 분류를 위해 네트워크 구조는 컨볼루션 신경망 구조를 이용하여 학습하였다. 최종적으로 학습된 모델을 임베디드 보드인 라즈베리파이4를 통해서 얼굴을 인식하여 거울을 통해 디스플레이에 나타내는 구조이다.
본 고는 휴먼 객체 검출 및 분류를 위한 것으로서, 입력된 동영상에서 배경 이미지와의 차분 영상을 통해 객체 영역을 검출하고, 검출된 객체 영역에서 얼굴 즉 헤드 영역을 검출하는 방법에 대해서 설명한다. 실시간으로 녹화된 동영상에서 사람이 움직이는 위치와, 크기 등이 아주 다양하며, 또한 한 사람이 아닌 여러 사람 객체를 검출하기 위하여 다중의 사람객체 검출기를 이용한 캐스케이드 사람 객체 추출 방법을 제안한다. 얼굴 크기 등을 고려하여 헤드 영역의 shape 를 기반으로 하여 1차 검출을 수행하고, 검출되지 않은 영역에 대하여 히스토그램 기반의 얼굴 영역을 검출한다. 또한 중복된 영상에 대해 베이지안 얼굴 검출기를 통해 인증함으로써 성능을 향상시킬 수 있다.
캐리커처의 일반적인 의미는 어떤 사람이나 사물의 특징을 추출하여 익살스럽게 풍자한 그림이나 글이다. 다시 말해, 캐리커처는 사람의 얼굴에서 특징을 잡아 과장하거나 왜곡하여 그린 데생이라고 한다. 컴퓨터를 이용한 기존의 캐리커처 제작방법으로는, 입력 이미지 좌표의 통계적인 차이값을 이용하는 PICASSO System 방법[1], 제작자의 애매한 느낌을 퍼지 논리를 이용하여 표현하는 방법, 이미지를 와핑하는 방법, 여러 단계의 벡터 필드 변환을 이용하는 방법등이 연구되어 왔다. 본 논문에서는 실시간 또는 준비된 영상을 입력으로 받아 저장한 후, 네 단계의 과정으로 처리한 후 최종적으로 캐리커처된 이미지를 생성하게 된다. 각 단계별 처리 내용으로는 첫번째 단계에서는 영상에서 얼굴을 검출하고 두번째 단계에서는 특정 얼굴부위의 기하학적 정보를 좌표값으로 추출한다. 세번째 단계에서는 전 단계에서 얻은 좌표값으로 로컬 와핑 기법을 이용하여 영상을 변환한다. 네 번째 단계에서는 변형된 영상으로 퍼지 논리를 이용하여 보다 개선된 윤곽선 이미지로 변환하여 캐리커처 이미지를 얻는다. 본 논문에서는 영상 인식, 변환 및 윤곽선 검출 및 둥의 여러 가지 영상 처리 기법을 이용하여 기존의 캐리커처 제작 방식보다 간단하고, 복잡한 연산 과정이 없는 캐리커처 제작 시스템을 구현하였다.
사람의 자세는 구면 파노라마에서 다양한 형태로 왜곡되어 나타날 수 있다. 따라서 구면 파노라마에서의 자세 추정은 평면 이미지에서의 경우보다 정확도가 떨어진다. 본 논문에서는 인식률이 높은 얼굴 인식 기법을 도입하여 구면 파노라마 영상에서 안정적으로 사람의 자세를 추정하는 방법을 제시한다. 먼저 구면 파노라마에서 얼굴을 인식한 후에 이에 기반하여 사람의 전신 영역을 추정하고 전신 영역을 포함하는 평면 영상을 획득한다. 획득된 평면 영상에서 자세를 추정하여 스켈레톤을 얻고 이를 캐릭터 모델에 적용한다. 제안 방법을 실영상에 적용하여 실험한 결과 평면 이미지에서와 동일한 수준의 정확도를 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.