• Title/Summary/Keyword: 얼굴 특징평가함수

Search Result 15, Processing Time 0.024 seconds

Face Recognition Algorithm Using Face Feature Evaluation Function (얼굴특징 평가함수를 이용한 얼굴인식 알고리즘)

  • 김정훈;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.484-487
    • /
    • 2003
  • 본 논문에서는 CCD 카메라로부터 입력된 얼굴영상에서 피부색상 정보를 이용하여 얼굴을 검출하고 얼굴특징자인 눈, 코, 입의 얼굴특징 벡터를 추출한 후, 벡터들로부터 특징 평가함수를 적용하여 개인의 얼굴을 인식하는 알고리즘을 제안하였다. 제안한 논문에서는 입력 영상에서 대하여 얼굴 피부색의 정보와 명암도 정보를 동시에 사용하여 얼굴영역을 검출한 후, 검출한 얼굴 영역에서 특징점인 눈, 코, 입 등을 추출한 다음, 각 특징 점들에 대한 기하학적 위치특성과 상관성을 이용한 얼굴특징 평가함수를 구성하였다. 제안한 알고리즘으로 230 장의 얼굴영상에 대하여 실험에 적용한 결과 얼굴검출 효율과 인식 성능을 개선할 수 있었다.

  • PDF

Facial Features Detection Using Heuristic Cost Function (얼굴의 특성을 반영하는 휴리스틱 평가함수를 이용한 얼굴 특징 검출)

  • Jang, Gyeong-Sik
    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.183-188
    • /
    • 2001
  • 이 논문은 눈의 형태에 대한 정보를 이용하여 눈동자를 효과적으로 찾는 방법과 얼굴 특성을 반영하는 평가함수를 이용하여 눈동자, 입의 위치와 같은 얼굴 특징들을 인식하는 방법을 제안하였다. 색 정보를 이용하여 입술과 얼굴 영역을 추출하고 눈동자와 흰자위간의 명도 차를 이용하는 함수를 사용하여 눈동자를 인식하였다. 마지막으로 얼굴 특성을 반영하느 평가함수를 정의하고 이를 이용하여 최종적인 얼굴과 눈, 입을 인식하였다. 제안한 방법을 사용하여 여러 영상들에 대해 실험하여 좋은 결과를 얻었다.

  • PDF

Adaptive Face Region Detection and Real-Time Face Identification Algorithm Based on Face Feature Evaluation Function (적응적 얼굴검출 및 얼굴 특징자 평가함수를 사용한 실시간 얼굴인식 알고리즘)

  • 이응주;김정훈;김지홍
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.156-163
    • /
    • 2004
  • In this paper, we propose an adaptive face region detection and real-time face identification algorithm using face feature evaluation function. The proposed algorithm can detect exact face region adaptively by using skin color information for races as well as intensity and elliptical masking method. And also, it improves face recognition efficiency using geometrical face feature and geometric evaluation function between features. The proposed algorithm can be used for the development of biometric and security system areas. In the experiment, the superiority of the proposed method has been tested using real image, the proposed algorithm shows more improved recognition efficiency as well as face region detection efficiency than conventional method.

  • PDF

Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function (평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적)

  • Kim, Ki-Sang;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, we proposed automatic face detection and tracking which is robustness in rotation. To detect a face image in complicated background and various illuminating conditions, we used face skin color detection. we used Harris corner detector for extract facial feature points. After that, we need to track these feature points. In traditional method, Lucas-Kanade feature tracker doesn't delete useless feature points by occlusion in current scene (face rotation or out of camera). So we proposed the estimation function, which delete useless feature points. The method of delete useless feature points is estimation value at each pyramidal level. When the face was occlusion, we deleted these feature points. This can be robustness to face rotation and out of camera. In experimental results, we assess that using estimation function is better than traditional feature tracker.

Face Recognition Using LDA and Weighted Vector (LDA와 가중치 벡터를 이용한 얼굴인식)

  • Jang, Kuyng-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1161-1164
    • /
    • 2005
  • 본 논문에서는 얼굴 영상에서 눈동자와 입술을 효과적으로 인식하는 방법을 제안하였다. 색 정보를 기반으로 LDA를 이용하여 입술 영역을 찾았다. 눈동자와 흰자위로 구성되는 눈의 형태적인 특징과 눈동자와 눈썹 사이의 관계를 반영하는 평가함수를 정의하여 눈동자를 인식하였다. 입술에서의 밝기차이를 기반으로 가중치 벡터를 정의하여 위 입술과 아래 입술 사이의 경계선을 찾고 입술과 인접한 피부와의 밝기 차이를 이용하여 입술의 양 끝점 및 위와 아래의 끝점을 찾았다. 여러 영상에 대한 실험 결과 좋은 결과를 얻었다.

  • PDF

Face classification and analysis based on geometrical feature of face (얼굴의 기하학적 특징정보 기반의 얼굴 특징자 분류 및 해석 시스템)

  • Jeong, Kwang-Min;Kim, Jung-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1495-1504
    • /
    • 2012
  • This paper proposes an algorithm to classify and analyze facial features such as eyebrow, eye, mouth and chin based on the geometric features of the face. As a preprocessing process to classify and analyze the facial features, the algorithm extracts the facial features such as eyebrow, eye, nose, mouth and chin. From the extracted facial features, it detects the shape and form information and the ratio of distance between the features and formulated them to evaluation functions to classify 12 eyebrows types, 3 eyes types, 9 mouth types and 4 chine types. Using these facial features, it analyzes a face. The face analysis algorithm contains the information about pixel distribution and gradient of each feature. In other words, the algorithm analyzes a face by comparing such information about the features.

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.

Robot vision system for face recognition using fuzzy inference from color-image (로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • This paper proposed the face recognition method which can be effectively applied to the robot's vision system. The proposed algorithm is recognition using hue extraction and feature point. hue extraction was using difference of skin color, pupil color, lips color. Features information were extraction from eye, nose and mouth using feature parameters of the difference between the feature point, distance ratio, angle, area. Feature parameters fuzzified data with the data generated by membership function, then evaluate the degree of similarity was the face recognition. The result of experiment are conducted with frontal color images of face as input images the received recognition rate of 96%.

Face Region Detection Algorithm using Fuzzy Inference (퍼지추론을 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-Sup;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.773-780
    • /
    • 2009
  • This study proposed a face region detection algorithm using fuzzy inference of pixel hue and intensity. The proposed algorithm is composed of light compensate and face detection. The light compensation process performs calibration for the change of light. The face detection process evaluates similarity by generating membership functions using as feature parameters hue and intensity calculated from 20 skin color models. From the extracted face region candidate, the eyes were detected with element C of color model CMY, and the mouth was detected with element Q of color model YIQ, the face region was detected based on the knowledge of an ordinary face. The result of experiment are conducted with frontal face color images of face as input images, the method detected the face region regardless of the position and size of face images.

  • PDF

Face Detection Based on Distribution Map (분포맵에 기반한 얼굴 영역 검출)

  • Cho Han-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Recently face detection has actively been researched due to its wide range of applications, such as personal identification and security systems. In this paper, a new face detection method based on the distribution map is proposed. Face-like regions are first extracted by applying the skin color map with the frequency to a color image and then, possible eye regions are determined by using the pupil color distribution map within the face-like regions. This enables the reduction of space for finding facial features. Eye candidates are detected by means of a template matching method using weighted window, which utilizes the correlation values of the luminance component and chrominance components as feature vectors. Finally, a cost function for mouth detection and location information between the facial features are applied to each pair of the eye candidates for face detection. Experimental results show that the proposed method can achieve a high performance.

  • PDF