• 제목/요약/키워드: 얼굴 특징평가함수

검색결과 15건 처리시간 0.019초

얼굴특징 평가함수를 이용한 얼굴인식 알고리즘 (Face Recognition Algorithm Using Face Feature Evaluation Function)

  • 김정훈;이응주
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.484-487
    • /
    • 2003
  • 본 논문에서는 CCD 카메라로부터 입력된 얼굴영상에서 피부색상 정보를 이용하여 얼굴을 검출하고 얼굴특징자인 눈, 코, 입의 얼굴특징 벡터를 추출한 후, 벡터들로부터 특징 평가함수를 적용하여 개인의 얼굴을 인식하는 알고리즘을 제안하였다. 제안한 논문에서는 입력 영상에서 대하여 얼굴 피부색의 정보와 명암도 정보를 동시에 사용하여 얼굴영역을 검출한 후, 검출한 얼굴 영역에서 특징점인 눈, 코, 입 등을 추출한 다음, 각 특징 점들에 대한 기하학적 위치특성과 상관성을 이용한 얼굴특징 평가함수를 구성하였다. 제안한 알고리즘으로 230 장의 얼굴영상에 대하여 실험에 적용한 결과 얼굴검출 효율과 인식 성능을 개선할 수 있었다.

  • PDF

얼굴의 특성을 반영하는 휴리스틱 평가함수를 이용한 얼굴 특징 검출 (Facial Features Detection Using Heuristic Cost Function)

  • 장경식
    • 정보처리학회논문지B
    • /
    • 제8B권2호
    • /
    • pp.183-188
    • /
    • 2001
  • 이 논문은 눈의 형태에 대한 정보를 이용하여 눈동자를 효과적으로 찾는 방법과 얼굴 특성을 반영하는 평가함수를 이용하여 눈동자, 입의 위치와 같은 얼굴 특징들을 인식하는 방법을 제안하였다. 색 정보를 이용하여 입술과 얼굴 영역을 추출하고 눈동자와 흰자위간의 명도 차를 이용하는 함수를 사용하여 눈동자를 인식하였다. 마지막으로 얼굴 특성을 반영하느 평가함수를 정의하고 이를 이용하여 최종적인 얼굴과 눈, 입을 인식하였다. 제안한 방법을 사용하여 여러 영상들에 대해 실험하여 좋은 결과를 얻었다.

  • PDF

적응적 얼굴검출 및 얼굴 특징자 평가함수를 사용한 실시간 얼굴인식 알고리즘 (Adaptive Face Region Detection and Real-Time Face Identification Algorithm Based on Face Feature Evaluation Function)

  • 이응주;김정훈;김지홍
    • 한국멀티미디어학회논문지
    • /
    • 제7권2호
    • /
    • pp.156-163
    • /
    • 2004
  • 본 논문에서는 적응적 얼굴영역 검출과 얼굴 특징자 평가함수를 사용한 실시간 얼굴인식 알고리즘을 제안하였다. 제안한 알고리즘은 명암도 정보와 타원마스킹 기법뿐만 아니라 인종별 얼굴피부색을 사용하여 정확한 얼굴영역을 적응적으로 검출 가능하다. 또한 제안한 알고리즘은 얼굴 특징자 및 얼굴특징자간 기하학적 평가함수를 사용하여 얼굴 인식 효율을 개선하였다. 제안한 알고리즘은 생체인증 및 보안 시스템 분야에 사용 가능하다. 실험에서는 제안한 방법의 우수성을 입증하기 위해 실 영상을 사용하였으며 실험 결과 기존의 방법보다 얼굴 영역 검출뿐만 아니라 얼굴인식 성능을 개선하였다.

  • PDF

평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적 (Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function)

  • 김기상;김계영;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제8권9호
    • /
    • pp.1-9
    • /
    • 2008
  • 일반적으로 얼굴 추적 시 움직임에 강건한 Lucas-Kanade 추적 방법이 많이 사용된다. 그러나 얼굴이 회전되었을 경우, 정확한 얼굴 영역 검출이 어렵다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 Lucas-Kanade 추적 방법에 평가함수를 도입하여 회전에 강건한 자동 얼굴 영역 검출 및 추적 방법을 제안하였다. 얼굴영역은 색상정보를 이용하여 자동으로 추출하였으며, Harris 코너 추출 알고리즘으로 특징점을 추출하였다. 폐색된 특징점을 구분하기위하여 특징점마다 기존 특징점과 새로운 특징점과의 차이 값을 계산한다. 만약, 특징점이 폐색되었을 경우, 잡음을 제거하기 위하여 제거하며 특징점의 개수가 일정 임계값 이하일 경우, 얼굴 영역을 다시 검출하였다. 실험결과를 통하여 얼굴 영역이 회전되었을 경우, 기존의 Lucas-Kanade 추적 방법보다 더 좋은 결과를 확인하였다.

LDA와 가중치 벡터를 이용한 얼굴인식 (Face Recognition Using LDA and Weighted Vector)

  • 장경식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.1161-1164
    • /
    • 2005
  • 본 논문에서는 얼굴 영상에서 눈동자와 입술을 효과적으로 인식하는 방법을 제안하였다. 색 정보를 기반으로 LDA를 이용하여 입술 영역을 찾았다. 눈동자와 흰자위로 구성되는 눈의 형태적인 특징과 눈동자와 눈썹 사이의 관계를 반영하는 평가함수를 정의하여 눈동자를 인식하였다. 입술에서의 밝기차이를 기반으로 가중치 벡터를 정의하여 위 입술과 아래 입술 사이의 경계선을 찾고 입술과 인접한 피부와의 밝기 차이를 이용하여 입술의 양 끝점 및 위와 아래의 끝점을 찾았다. 여러 영상에 대한 실험 결과 좋은 결과를 얻었다.

  • PDF

얼굴의 기하학적 특징정보 기반의 얼굴 특징자 분류 및 해석 시스템 (Face classification and analysis based on geometrical feature of face)

  • 정광민;김정훈
    • 한국정보통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.1495-1504
    • /
    • 2012
  • 본 논문에서는 얼굴의 기하학적 특징정보를 기반으로 하여 얼굴의 특징자인 눈썹, 눈, 입, 턱선의 분류 및 해석 알고리즘을 제안하였다. 먼저, 얼굴 특징정보의 분류와 해석을 하기위한 전처리 과정으로 얼굴 특징자들의 눈, 코, 입, 눈썹, 턱선을 추출하기위해 얼굴 특징자 추출 알고리즘을 적용하여 얼굴 특징자들을 추출하게 된다. 추출한 얼굴 특징자들의 형태 정보와 모양정보 및 특징자들 간의 거리비율을 검출하여 이를 평가함수화 하고, 3가지의 눈 타입, 9가지의 입 타입, 12가지의 눈썹 타입 그리고 4가지의 턱선 타입의 분류를 하게 된다. 이렇게 분류된 얼굴 특징자들을 이용하여 얼굴을 해석하게 된다. 얼굴해석 알고리즘은 각각의 특징자들에 대한 고유의 특징자들의 내부구간의 화소분포 정보와 기울기 정보를 가지고 있다. 따라서 특징자들 간의 정보를 이용하여 얼굴을 해석할 수 있었다.

CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계 (Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method)

  • 진용탁;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.91-96
    • /
    • 2015
  • 본 연구는 조명변화에 강인한 CT 전처리 기법 기반 개선된 얼굴인식 시스템을 소개한다. 전처리 알고리즘으로 CT알고리즘은 조명이 없는 환경에서도 얼굴의 지역적인 특징만을 추출한다. 얼굴의 지역적인 특징 추출을 가능하게 해준다. 처리된 데이터는 $(2D)^2$ 기반 대표적인 차원축소 알고리즘인 PCA를 사용하여 특징을 추출하였다. 전처리 알고리즘을 통한 특징 데이터는 제안한 방사형 기저함수 신경회로망의 입력으로 사용하였다. 방사형 기저함수 신경회로망의 은닉층은 FCM으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 또한 ABC 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 본 연구는 제안된 시스템의 성능 평가를 위해 Yale Face database B와 CMU PIE database로 실험하였다.

로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식 (Robot vision system for face recognition using fuzzy inference from color-image)

  • 이주신
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권2호
    • /
    • pp.106-110
    • /
    • 2014
  • 본 논문에서는 로봇의 시각시스템에 효과적으로 적용할 수 있는 얼굴인식 방법을 제안하였다. 제안한 알고리즘은 얼굴영상의 색상추출과 특징점을 이용하여 인식한다. 색상추출은 피부색, 눈동자색, 입술색의 차를 이용하였으며, 특징정보는 눈, 코, 입에서 추출된 특징점 사이의 거리, 거리 비율, 각도, 면적의 차를 특징 파라미터로 이용하였다. 특징 파라미터를 퍼지화 데이터로 멤버십 함수를 생성한 후, 유사도를 평가하여 얼굴을 인식하였다. 입력받은 정면 칼라 영상으로 실험한 결과 96%의 인식율을 나타내었다.

퍼지추론을 이용한 얼굴영역 검출 알고리즘 (Face Region Detection Algorithm using Fuzzy Inference)

  • 정행섭;이주신
    • 한국항행학회논문지
    • /
    • 제13권5호
    • /
    • pp.773-780
    • /
    • 2009
  • 본 논문은 픽셀의 색상과 채도를 퍼지추론한 얼굴영역 검출 알고리즘을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로 구성되었다. 조명보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부 색상 모델에서 계산된 색상과 채도를 특징 파라미터로 멤버쉽 함수를 생성하여 유사도를 평가하였다. 추출된 얼굴 후보영역을 CMY칼라 모델에서 C요소로 눈을 검출하였고, YIQ 칼라 공간에서 Q요소로 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 정면 칼라 영상으로 실험한 결과, 얼굴 영상의 위치와 크기에 관계없이 얼굴 영역이 검출됨을 알 수 있었다.

  • PDF

분포맵에 기반한 얼굴 영역 검출 (Face Detection Based on Distribution Map)

  • 조한수
    • 한국멀티미디어학회논문지
    • /
    • 제9권1호
    • /
    • pp.11-22
    • /
    • 2006
  • 얼굴 검출은 개인 인증이나 보안 등 그 응용분야가 다양하여 활발히 연구가 진행되고 있다. 본 논문에서는 분포맵에 기반한 얼굴 검출의 새로운 방법을 제안한다. 제안한 방법은 먼저, 빈도수를 고려한 피부색 분포맵을 입력 영상에 적용하여 일차적으로 얼굴 후보영역을 구하고, 이 영역에서 눈동자색 분포맵을 이용하여 눈후보영역을 결정함으로써 얼굴 구성 요소를 탐색하는 탐색공간을 축소한다. 결정된 눈 후보영역에서 가중치가 있는 윈도우를 이용하여 휘도성분과 색상성분의 상관값을 특징벡터로 한 템플릿 정합 방법으로 눈 후보점을 검출한다. 최종적으로 각 눈 후보점 쌍에 대하여 눈과 입의 위치관계 정보와 입을 인식하는 평가함수를 이용하여 얼굴을 검출하였다. 실험 결과, 제안된 방법은 좋은 성능을 보였다.

  • PDF