• 제목/요약/키워드: 얼굴표정인식

검색결과 293건 처리시간 0.026초

양측성 안구운동이 조현병 환자의 얼굴 재인에 미치는 영향 (The Effect of Bilateral Eye Movements on Face Recognition in Patients with Schizophrenia)

  • 이나현;김지웅;임우영;이상민;임상현;권혁찬;김민영;김기웅;김승준
    • 정신신체의학
    • /
    • 제24권1호
    • /
    • pp.102-108
    • /
    • 2016
  • 연구목적 조현병 환자의 흔한 신경인지적 결함 중 대표적인 것으로 재인 기억의 손상을 들 수 있다. 또한 조현병 환자에게서는 일반인에게 관찰되는 정서 자극에 대한 기억 증진 현상이 명확하게 나타나지 않는다. 한편, 기억 검사 시행 전 양측성 안구운동을 수행할 경우 일반적인 재인 기억뿐만 아니라 정서가를 가진 자극에 대한 기억이 보다 향상되는 것으로 알려져 있다. 본 연구에서는 이러한 양측성 안구운동의 기억 향상 효과가 조현병 환자에게서도 나타나는지를 알아보고자 하였다. 방 법 조현병 환자 21명이 연구에 참여하였다. 참여자들은 일주일 간격으로 두 번 분노 표정 혹은 무표정을 보이는 얼굴 사진들을 학습한 후 양측성 안구운동 혹은 안구 고정 조건을 무작위 순서로 거쳐 이전에 학습한 사진에 대한 재인 과제를 시행하였다. 양측성 안구운동 여부 및 얼굴 사진 표정 차이에 따른 인식 정확도, 반응 편향성, 정답 반응 시간의 차이를 이원 반복측정 분산분석을 사용하여 분석하였다. 결 과 조현병 환자는 양측성 안구운동을 시행한 경우 그렇지 않은 경우에 비해 통계적으로 유의미하게 얼굴 재인 과제에서 정답 반응 시간이 단축되었고(F=5.812, p<0.05), 반응 편향성이 완화되었다(F=10.366, p<0.01). 조현병 환자가 얼굴 재인 과제 수행 시 양측성 안구운동 조건과 얼굴 자극 표정 조건 간의 상호작용은 통계적으로 유의미하지 않았다. 결 론 본 연구 결과는 양측성 안구운동이 조현병 환자의 일반적인 재인 기억 능력을 촉진시킬 수 있으나 정서 자극의 처리를 보다 촉진시키지는 못함을 보여준다. 향후 신경생리학적 혹은 신경영상학적 검사 등의 추가 연구를 통해 이러한 기억 촉진 효과의 생물학적 기전을 밝혀야 할 것이다.

인간의 언어와 얼굴 표정에 통하여 자동적으로 감정 인식 시스템 새로운 접근법 (Automatic Human Emotion Recognition from Speech and Face Display - A New Approach)

  • 딩�E령;이영구;이승룡
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(B)
    • /
    • pp.231-234
    • /
    • 2011
  • Audiovisual-based human emotion recognition can be considered a good approach for multimodal humancomputer interaction. However, the optimal multimodal information fusion remains challenges. In order to overcome the limitations and bring robustness to the interface, we propose a framework of automatic human emotion recognition system from speech and face display. In this paper, we develop a new approach for fusing information in model-level based on the relationship between speech and face expression to detect automatic temporal segments and perform multimodal information fusion.

실시간 얼굴 표정 인식을 위한 새로운 사각 특징 형태 선택기법 (New Rectangle Feature Type Selection for Real-time Facial Expression Recognition)

  • 김도형;안광호;정명진;정성욱
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.130-137
    • /
    • 2006
  • In this paper, we propose a method of selecting new types of rectangle features that are suitable for facial expression recognition. The basic concept in this paper is similar to Viola's approach, which is used for face detection. Instead of previous Haar-like features we choose rectangle features for facial expression recognition among all possible rectangle types in a 3${\times}$3 matrix form using the AdaBoost algorithm. The facial expression recognition system constituted with the proposed rectangle features is also compared to that with previous rectangle features with regard to its capacity. The simulation and experimental results show that the proposed approach has better performance in facial expression recognition.

산후조리원 내 신생아를 위한 원격 관리 시스템 (Remote Management System For Newborns In Postpartum Care)

  • 정이진;고지연;위다연;이혜빈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.1019-1021
    • /
    • 2022
  • 본 연구는 산후조리원 내 신생아를 위한 원격 관리 시스템을 제안한다. 기존 시스템들은 공기질 문제만을 해결하거나, 모니터링 문제만을 해결하는 등 단순한 동작과 감시에 초점이 맞추어졌으나, 제안하는 시스템은 실내와 신생아 주변에 설치된 각각의 센서를 통하여 공기질을 포함한 실내 환경과 신생아를 모니터링하여 간호사와 산모가 쉽게 신생아의 건강을 웹과 엡으로 모니터링하고 원격으로 관리한다. 또한, OpenCV 라이브러리를 이용하여 신생아의 얼굴을 인식하고 표정별 이미지를 저장할 수 있도록 설계 및 구현하고 있다.

이용자 중심의 얼굴 표정을 통한 감정 인식 TV의 상호관계 연구 -인간의 표정을 통한 감정 인식기반의 TV과 인간의 상호 작용 연구 (The interaction between emotion recognition through facial expression based on cognitive user-centered television)

  • 이종식;신동희
    • 한국HCI학회논문지
    • /
    • 제9권1호
    • /
    • pp.23-28
    • /
    • 2014
  • In this study we focus on the effect of the interaction between humans and reactive television when emotion recognition through facial expression mechanism is used. Most of today's user interfaces in electronic products are passive and are not properly fitted into users' needs. In terms of the user centered device, we propose that the emotion based reactive television is the most effective in interaction compared to other passive input products. We have developed and researched next generation cognitive TV models in user centered. In this paper we present a result of the experiment that had been taken with Fraunhofer IIS $SHORE^{TM}$ demo software version to measure emotion recognition. This new approach was based on the real time cognitive TV models and through this approach we studied the relationship between humans and cognitive TV. This study follows following steps: 1) Cognitive TV systems can be on automatic ON/OFF mode responding to motions of people 2) Cognitive TV can directly select channels as face changes (ex, Neutral Mode and Happy Mode, Sad Mode, Angry Mode) 3) Cognitive TV can detect emotion recognition from facial expression of people within the fixed time and then if Happy mode is detected the programs of TV would be shifted into funny or interesting shows and if Angry mode is detected it would be changed to moving or touching shows. In addition, we focus on improving the emotion recognition through facial expression. Furthermore, the improvement of cognition TV based on personal characteristics is needed for the different personality of users in human to computer interaction. In this manner, the study on how people feel and how cognitive TV responds accordingly, plus the effects of media as cognitive mechanism will be thoroughly discussed.

얼굴인식을 위한 해마의 뇌모델링 학습 알고리즘 개발 (Development of Learning Algorithm using Brain Modeling of Hippocampus for Face Recognition)

  • 오선문;강대성
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.55-62
    • /
    • 2005
  • 본 논문에서는 인간의 인지학적인 두뇌 원리인 대뇌피질과 해마 신경망을 공학적으로 모델링하여 얼굴 영상의 특징 벡터들을 고속 학습하고, 각 영상의 최적의 특징을 구성할 수 있는 해마 신경망 모델링 알고리즘인 HNMA(Hippocampal Neuron Modeling Algorithm)을 이용한 얼굴인식 시스템을 제안한다. 시스템은 크게 특징추출 부분과 학습 및 인식 부분으로 구성 되어 있으며, 특징추출 부분에서는 PCA(Principal Component Analysis)와 LDA (Linear Discriminants Analysis)를 순차적으로 적용하여 분별력이 좋은 특징들로 구성한다. 학습부분에서는 해마 신경망 구조의 순서에 따라 입력되는 영상 데이터의 특징들을 치아 이랑 영역에서 호감도 조정에 따라서 반응 패턴으로 이진화 하고, CA3 영역에서 자기 연상 메모리 단계를 거쳐 노이즈를 제거한다. CA3의 정보를 받는 CAI영역에서는 신경망에 의해 학습되어 장기기억이 만들어 진다. 제안한 시스템의 성능을 평가하기 위하여 실험은 표정과 포즈변화 그리고 저 화질 이미지를 각각 구분하여 인식률을 확인하였다. 실험 결과, 본 논문에서 제안하는 특징 추출 방법과 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.

감정표현을 위한 FACS 기반의 안드로이드 헤드의 개발 (Development of FACS-based Android Head for Emotional Expressions)

  • 최동운;이덕연;이동욱
    • 방송공학회논문지
    • /
    • 제25권4호
    • /
    • pp.537-544
    • /
    • 2020
  • 본 논문에서는 FACS(Facial Action Coding System)에 기반을 둔 안드로이드 로봇 헤드의 개발을 통한 감정표현 방법을 제안한다. 안드로이드 로봇은 인간과 가까운 외모를 가진 로봇을 말하며, 인공 피부, 인공 근육을 가지고 있다. 감정 표현을 로봇으로 구현하기 위해서는 인공 근육의 개수와 배치를 정하여야 하는데 이를 위해 인간의 얼굴 움직임을 해부학적으로 분석하였다. FACS는 해부학을 기반으로 하여 표정을 만들 때의 얼굴의 움직임을 분석한 시스템이다. FACS에서는 표정은 AU(Action Unit)의 조합으로 만들어지며, 이 AU를 기반으로 로봇의 인공 근육의 수와 위치를 정하게 된다. 개발된 안드로이드 헤드는 30개의 인공 근육에 해당되는 모터와 와이어를 가지고 있으며, 표정 구현을 위한 인공 피부를 가지고 있다. 제한된 머리 공간에 많은 모터를 탑재하기 위해 spherical joint와 스프링을 이용하여 초소형 안구 모듈이 개발되었고, 와이어 경로의 효율적인 설계를 기반으로 30개의 모터가 배치되었다. 제작된 안드로이드 헤드는 30 자유도를 가지고 13개의 기본 감정 표현을 구현 가능하였고, 전시회에서 일반 관람객들을 대상으로 인식률을 평가 받았다.

생체 기반 시각정보처리 동작인식 모델링 (A Bio-Inspired Modeling of Visual Information Processing for Action Recognition)

  • 김진옥
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권8호
    • /
    • pp.299-308
    • /
    • 2014
  • 신체 동작, 얼굴 표정과 같이 아주 복잡한 생체 패턴을 인식하고 분류하는 인간의 능력을 모방한 정보처리 컴퓨팅 관련 연구가 최근 다수 등장하고 있다. 특히 컴퓨터비전 분야에서는 인간의 뛰어난 인지 능력 중 상황정보 없이 시각시퀀스에서 동작을 분류하는 기능을 통해 시공간적 패턴 코딩과 빠른 인식 방법을 이해하고자 한다. 본 연구는 비디오 시퀀스상의 동작인식에 생물학적 시각인지과정의 영향을 받은 생체 기반 컴퓨터비전 모델을 제시하였다. 제안 모델은 이미지 시퀀스에서 동작을 검출하고 시각 패턴을 판별하는 데 생체 시각처리과정의 신경망 구조 단계를 반영하였다. 실험을 통해 생체 기반 동작인식 모델이 인간 시각인지 처리의 여러 가지 속성을 고려했을 뿐 아니라 기존 동작인식시스템에 비해 시간 정합성이 뛰어나며 시간 변화에 강건한 분류 능력을 보임을 알 수 있다. 제안 모델은 지능형 로봇 에이전트와 같은 생체 기반 시각정보처리 시스템 구축에 기여할 수 있다.

다중 분류기의 판정단계 융합에 의한 얼굴인식 (Multi-classifier Decision-level Fusion for Face Recognition)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제49권4호
    • /
    • pp.77-84
    • /
    • 2012
  • 얼굴인식 기술은 지능형 보안, 웹에서 콘텐츠 검색, 지능로봇의 시각부분, 머신인터페이스 등, 활용이 광범위 하다. 그러나 일반적으로 대상자의 표정과 포즈 변화, 주변의 조명 환경과 같은 문제가 있으며 이와 더불어 원거리에서 획득한 영상의 경우 저해상도를 비롯하여 블러와 잡음에 의한 영상의 열화 등의 여러 가지 어려움이 발생한다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법(Linear Discriminant Analysis)을 이용한 다중 분류기(Classifier)에 의한 판정을 융합하여 얼굴 영상 인식을 수행한다. Fisher 선형판별법은 집단 간 분산을 최대로 하고 집단 내 분산을 최소로 하는 공간으로 선형 투영하는 방법으로, 학습영상의 수가 적을 경우 특이행렬 문제가 발생하지만 포톤카운팅 선형 판별법은 이러한 문제가 없으므로 차원축소를 위한 전 처리 과정이 필요 없다. 본 논문의 다중 분류기는 포톤 카운팅 선형판별법의 유클리드 거리(Euclidean Distance) 또는 정규화된 상관(Normalized Correlation)을 적용하는 판정규칙에 따라 구성된다. 다중분류기의 판정의 융합은 각 분류기 cost의 정규화(Normalization), 유효화(Validation), 그리고 융합규칙(Fusion Rule)으로 구성된다. 각 분류기에서 도출된 cost는 같은 범위로 정규화된 후 유효화 과정에서 선별되고 Minimum, 또는 Average, 또는 Majority-voting의 융합규칙에 의하여 융합된다. 실험에서는 원거리에서 획득한 효과를 구현하기 위하여 고해상도 데이터베이스 영상을 인위적으로 Unfocusing과 Motion 블러를 이용하여 열화하여 테스트하였다. 실험 결과는 다중분류기 융합결과의 인식률은 단일분류기보다 높다는 것을 보여준다.

얼굴색 정보를 포함하기 위한 LDP 코드 설계에 관한 연구 (A Study on LDP Code Design to includes Facial Color Information)

  • 정웅경;이태환;안용학;채옥삼
    • 융합보안논문지
    • /
    • 제14권7호
    • /
    • pp.9-15
    • /
    • 2014
  • 본 논문에서는 기존 LDP 코드의 문제점을 보완하고 화소의 색상 정보와 밝기 정보, 에지 방향 정보, 그리고 에지 반응 크기 정보를 포함할 수 있는 새로운 LDP를 제안한다. 제안된 방법은 얼굴색 정보를 포함하기 위해 기존 LDP 코드를 줄이는 방법을 제안하고 그 결과를 분석하였다. 새로운 LDP 코드는 기존 LDP 코드와 달리 6비트로 표현함으로써 나머지 2비트에 필요로 하는 정보를 포함할 수 있도록 하였으며, 기존 LDP 코드에 비해서 잡음과 환경 변화에 효과적으로 적응할 수 있도록 하였다. 실험 결과 제안된 LDP 코드는 기존 방법들에 비해 높은 인식률 향상과 얼굴 표정인식 결과에서도 효과적임을 보여주었다.