• Title/Summary/Keyword: 얼굴포즈합성

Search Result 6, Processing Time 0.017 seconds

Accurate Face Pose Estimation and Synthesis Using Linear Transform Among Face Models (얼굴 모델간 선형변환을 이용한 정밀한 얼굴 포즈추정 및 포즈합성)

  • Suvdaa, B.;Ko, J.
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.508-515
    • /
    • 2012
  • This paper presents a method that estimates face pose for a given face image and synthesizes any posed face images using Active Appearance Model(AAM). The AAM that having been successfully applied to various applications is an example-based learning model and learns the variations of training examples. However, with a single model, it is difficult to handle large pose variations of face images. This paper proposes to build a model covering only a small range of angle for each pose. Then, with a proper model for a given face image, we can achieve accurate pose estimation and synthesis. In case of the model used for pose estimation was not trained with the angle to synthesize, we solve this problem by training the linear relationship between the models in advance. In the experiments on Yale B public face database, we present the accurate pose estimation and pose synthesis results. For our face database having large pose variations, we demonstrate successful frontal pose synthesis results.

A Study on the Synthesis of Facial Poses based on Warping (워핑 기법에 의한 얼굴의 포즈 합성에 관한 연구)

  • 오승택;서준원;전병환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.499-501
    • /
    • 2001
  • 본 논문에서는 사실적인 아바타(avata) 구현의 핵심이라 할 수 있는 입체적인 얼굴 표현을 위해, (※원문참조) 기하학적인 정보를 사용하지 않고 중첩 메쉬를 허용하는 개선된 메쉬 워프 알고리즘(mesh warp algor※원문참조)을 이용하여 IBR(Image Based Rendering)을 구현하는 방법을 제안한다. 3차원 모델을 대신하기 위해 (※원문참조) 인물의 정면, 좌우 반측면, 좌우 측면의 얼굴 영상들에 대해 작성된 메쉬를 사용한다. 합성하고자 하는 (※원문참조) 정면 얼굴 영상에 대해서는 정면 메쉬만을 작성하고, 반측면이나 측면 메쉬는 표준 메쉬를 근거로 자(※원문참조)된다. 얼굴 포즈 합성의 성능을 펴가하기 위해, 얼굴을 수평으로 회전하는 실제 포즈 영상과 합성된 포(※원문참조)에 대해 주요 특징점 들을 정규화 한 위치 오차를 측정한 결과, 평균적으로 양 눈의 중심에서 입의 (※원문참조)리에 대해 약 5%의 위치 오차만이 발생한 것으로 나타났다.

  • PDF

Face Image Synthesis using Nonlinear Manifold Learning (비선형 매니폴드 학습을 이용한 얼굴 이미지 합성)

  • 조은옥;김대진;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.182-188
    • /
    • 2004
  • This paper proposes to synthesize facial images from a few parameters for the pose and the expression of their constituent components. This parameterization makes the representation, storage, and transmission of face images effective. But it is difficult to parameterize facial images because variations of face images show a complicated nonlinear manifold in high-dimensional data space. To tackle this problem, we use an LLE (Locally Linear Embedding) technique for a good representation of face images, where the relationship among face images is preserving well and the projected manifold into the reduced feature space becomes smoother and more continuous. Next, we apply a snake model to estimate face feature values in the reduced feature space that corresponds to a specific pose and/or expression parameter. Finally, a synthetic face image is obtained from an interpolation of several neighboring face images in the vicinity of the estimated feature value. Experimental results show that the proposed method shows a negligible overlapping effect and creates an accurate and consistent synthetic face images with respect to changes of pose and/or expression parameters.

A 3D Face Reconstruction and Tracking Method using the Estimated Depth Information (얼굴 깊이 추정을 이용한 3차원 얼굴 생성 및 추적 방법)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.21-28
    • /
    • 2011
  • A 3D face shape derived from 2D images may be useful in many applications, such as face recognition, face synthesis and human computer interaction. To do this, we develop a fast 3D Active Appearance Model (3D-AAM) method using depth estimation. The training images include specific 3D face poses which are extremely different from one another. The landmark's depth information of landmarks is estimated from the training image sequence by using the approximated Jacobian matrix. It is added at the test phase to deal with the 3D pose variations of the input face. Our experimental results show that the proposed method can efficiently fit the face shape, including the variations of facial expressions and 3D pose variations, better than the typical AAM, and can estimate accurate 3D face shape from images.

Style Synthesis of Speech Videos Through Generative Adversarial Neural Networks (적대적 생성 신경망을 통한 얼굴 비디오 스타일 합성 연구)

  • Choi, Hee Jo;Park, Goo Man
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.465-472
    • /
    • 2022
  • In this paper, the style synthesis network is trained to generate style-synthesized video through the style synthesis through training Stylegan and the video synthesis network for video synthesis. In order to improve the point that the gaze or expression does not transfer stably, 3D face restoration technology is applied to control important features such as the pose, gaze, and expression of the head using 3D face information. In addition, by training the discriminators for the dynamics, mouth shape, image, and gaze of the Head2head network, it is possible to create a stable style synthesis video that maintains more probabilities and consistency. Using the FaceForensic dataset and the MetFace dataset, it was confirmed that the performance was increased by converting one video into another video while maintaining the consistent movement of the target face, and generating natural data through video synthesis using 3D face information from the source video's face.

Pose Transformation of a Frontal Face Image by Invertible Meshwarp Algorithm (역전가능 메쉬워프 알고리즘에 의한 정면 얼굴 영상의 포즈 변형)

  • 오승택;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.153-163
    • /
    • 2003
  • In this paper, we propose a new technique of image based rendering(IBR) for the pose transformation of a face by using only a frontal face image and its mesh without a three-dimensional model. To substitute the 3D geometric model, first, we make up a standard mesh set of a certain person for several face sides ; front. left, right, half-left and half-right sides. For the given person, we compose only the frontal mesh of the frontal face image to be transformed. The other mesh is automatically generated based on the standard mesh set. And then, the frontal face image is geometrically transformed to give different view by using Invertible Meshwarp Algorithm, which is improved to tolerate the overlap or inversion of neighbor vertexes in the mesh. The same warping algorithm is used to generate the opening or closing effect of both eyes and a mouth. To evaluate the transformation performance, we capture dynamic images from 10 persons rotating their heads horizontally. And we measure the location error of 14 main features between the corresponding original and transformed facial images. That is, the average difference is calculated between the distances from the center of both eyes to each feature point for the corresponding original and transformed images. As a result, the average error in feature location is about 7.0% of the distance from the center of both eyes to the center of a mouth.