본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.
본 논문에서는 영상에서의 시각적 자극의 특징에 의한 돌출과 특정 대상에 관련한 단서들간의 상호작용에 기반하여 얼굴을 검출하는 주의집중모델을 제안한다. 제안하는 모델은 얼굴에 대한 하향식 다중 단서로 모양(shape), 피부색(skin color), 밝기(luminance), 거리에 대응하는 크기, 깊이 등을 사용하며 이들 단서들이 상향식 프로세스와의 상호작용을 통해 목표하는 얼굴을 검출하도록 유도하는 상향식/하향식 결합에 기반한다. 제안하는 방법은 크기 및 회전변화를 갖는 다수의 얼굴을 포함한 영상에서 얼굴검출을 수행함으로써 성능을 검증하였다.
생체인식 기술의 발달에 의해 생체 인증 수단 또한 늘어남에 따라 사용자의 얼굴을 이용한 인증방법이 점차 실용화 되어가고 있다. 그러나 주변 환경에 제약받을 경우 완벽한 인식률을 보여주지 못하는 경우가 발생한다. 본 논문에서는 기존의 얼굴인식 방법의 오탐지 부분에 대한 개선방법을 제안 하고자 하였다. 디지털 영사식 방법을 통한 무아레 현상을 얼굴인증에 접목시켜 보다 정확한 얼굴 인증을 진행할 수 있도록 개선된 인증 방법을 제시한다.
최근 생체 정보를 이용한 사용자 인증 기술이 발전하면서 이를 모바일 기기에 적용하는 사례가 크게 증가하고 있다. 특히, 얼굴 기반 인증 방식은 비접촉식이며 사용이 편리하여 적용 범위가 점점 확대되고 있는 추세이다. 그러나, 사용자의 얼굴 사진이나 동영상 등을 이용한 위변조가 용이하기 때문에 모바일 기기 내 보안 유지에 어려움을 야기한다. 본 고에서는 이러한 문제를 해결하기 위해 최근 활발히 연구되고 있는 심층신경망 기반 얼굴 위변조 검출 연구의 최신 동향을 소개하고자 한다. 먼저, 기본 합성곱 신경망 구조부터 생성모델 기반의 위변조 검출 방법까지 다양한 신경망 구조를 이용한 위변조 검출 방법에 대해 설명한다. 또한, 심층신경망 학습을 위해 사용되는 얼굴 위변조 데이터셋에 대해서도 간략히 살펴보고자 한다.
최근 딥러닝 기술은 다양한 분야에서 놀라운 성능을 보여주고 있어 많은 서비스에 적용되고 있다. 얼굴인식 또한 딥러닝 기술을 접목하여 높은 수준으로 얼굴인식이 가능해졌다. 하지만 딥러닝 기술은 원본 이미지를 최소한으로 변조시켜 딥러닝 모델의 오인식을 발생시키는 적대적 예제에 취약하다. 이에 따라, 본 논문에서는 딥러닝 기반 얼굴인식 시스템에 대해 적대적 예제를 이용하여 기만공격 실험을 수행하였으며 실제 얼굴에 분장할 수 있는 영역을 고려하여 설정된 변조 영역에 따른 기만공격 성능을 분석한다.
본 논문은 차량 내부에서 정면의 얼굴 뿐 아니라, 측면의 얼굴도 효과적으로 추출하기 위해 다시점의 Haar-like 특징을 결합하여 사용하는 방법을 개발하여 적용하였고, 얼굴의 위치변화에 비교적 강건한 HMM(Hidden Markov Model)기반의 얼굴 인식을 사용하며, 또한 다양한 얼굴자세, 조명환경 등의 다중 얼굴 자료를 기반으로 하는 다시점 얼굴 DB의 학습을 통해 보다 강건하게 얼굴을 인식할 수 있도록 개선하였다. PC를 통해 운전자의 얼굴이 정상적으로 인식되면 자동으로 시동모듈을 제어하여 시동을 걸어줌으로써 운전자의 편리성을 향상할 수 있고 운전자가 아닌 자가 운전석에 착선한 경우에는 획득된 운전자의 얼굴영상 부분을 원격단말기로 전송하여 운전자 또는 경찰이 이를 이용하여 도난을 방지할 수 있는 조치를 취할 수 있도록 지원한다.
본 논문은 얼굴의 표정과 몸 동작을 광학식 동작 포착장비를 활용하여 동시에 포착하는 경우에 있어 얼굴 부위 마커들에 대한 노이즈에 강건한 데이터 처리 방법에 대해 다룬다. 일반적인 얼굴 표정만 포착하는 경우와 달리, 몸의 움직임과 동시에 포착할 경우 포착용 카메라가 멀리 있어 얼굴에 붙인 마커들의 궤적 데이터는 특별한 처리를 요한다. 특히 궤적의 표식화, 빈 곳 메우기, 노이즈 제거의 과정이 필수적이며, 이러한 과정을 위해 본 논문에서는 지역좌표에 기반을 둔 궤적 데이터 처리 방법을 제안한다. 지역 좌표는 강체변형에 불변한 특징이 있으며, 얼굴모양의 국지적인 변화를 의미하여, 궤적 데이터처리에 효과적으로 활용 될 수 있음을 보였다. 또한 제안한 방법을 활용하여 애니메이션을 제작해 실제 제작 환경에 적용 가능함을 보였다.
본 논문은 조명변화에 민감하지 않고, 사진에 대한 오인식을 방지하기 위한 얼굴인식 방법을 제안한다. 제안한 방법은 적외선과 깊이 영상을 동시에 이용하며, 적외선 영상으로 조명변화의 민감성을 해결하고, 깊이 영상으로 사진과 같은 2차원 영상에 대한 오인식을 방지한다. 적외선과 깊이 영상을 동시에 이용한 얼굴 검출 방법과 얼굴 인식을 위한 특징 추출 및 매칭 방법을 구현하였으며, 모의실험을 통하여 기존 방법에 비해 얼굴인식의 정확도가 증가함을 보인다.
Active Appearance Models(AAMs)은 얼굴인식, 얼굴추적, 표정인식 뿐만 아니라 눈동자 추적과 같은 분야에도 적용되어 좋은 성능을 보여 주었다. 보통 AAM 을 생성하기 위해서는 얼굴 영상과 얼굴의 특징을 나타내는 점으로 구성된 매쉬로 이루어 지는 트레이닝 셋이 필요하다. AAM fitting algorithm 은 학습한 얼굴과 유사한 얼굴을 Fitting 할 때에는 뛰어난 성능을 보이지만 조명에 의한 그림자 또는 액세서리에 의한 얼굴의 피부 가림과 같이 전체 얼굴이 잘 나타나지 않는 불완전한 영상의 Fitting 은 입력영상과 템플릿 영상간의 오차가 커지기 때문에 실패할 가능성이 매우 높다. 본 논문에서 우리는 AAMs 에서 사용되는 PCA를 Higher-order Singular Value Decomposition(HOSVD)로 대체하여 이 문제를 보완하는 강화된 AAM 을 제안한다. 제안된 AAM 에는 기존에 사용하던 고유벡터와 함께 HOSVD 를 통해 획득할 수 있는 Eigen-Modes 를 추가하여 사용한다. 또한 우리는 Yale Face Database를 이용한 평가를 통해 제안된 AAM 이 기존 AAM 보다 불완전한 영상에 효과적으로 대응하는 것을 보여준다.
본 논문은 얼굴의 아이겐공간에서 벡터 양자화 기법을 이용한 얼굴 인식을 제안한다. 아이겐페이스 방법의 문제점은 하나의 아이겐페이스로 얼굴의 다양한 변이를 표현하기에 부족하다는데 있다. 이러한 약점을 극복하기위해 제안된 방법은 아이겐페이스 공간에서 얼굴의 변이를 벡터 양자화 기법으로 군집화한다. 벡터 양자기는 학습과정을 통해 각 사람의 아이겐 페이스 집합을 양자화된 대표점들로 표현한다. 그리고 인식 과정을 통해 벡터 양자기는 얼굴 데이터 베이스에 저장된 대표점들과 입력된 얼굴 특징벡터와의 양자화 오차를 최소로 하는 대표점을 찾는다. 실험은 Faces94 데이터베이스에서 600장의 얼굴을 가지고 수행하였다. 실험 결과 기존의 아이겐페이스 방법은 최소 64개의 오인식을 하였고 제안된 방법은 코드북의 크기를 4개로 하였을 때 최소 20개의 오인식을 보였다. 결론적으로 제안된 방법은 얼굴의 변이를 수용하여 인식률을 향상시키는 효과적인 방법으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.