Proceedings of the Korea Multimedia Society Conference
/
2002.05c
/
pp.291-294
/
2002
본 논문은 얼굴 영역 및 얼굴 구성 요소의 얼굴 특징점을 추출하는 방법을 제안한다. 얼굴 특징점은 얼굴 인식을 하는데 있어서 중요한 자료이다. 얼굴 영역은 객체 단위 추출 방법을 사용하여 얼굴의 고유 영역만을 추출한다. 얼굴의 구성요소는 각 요소간의 기하학적 정보를 이용하여 얼굴 영역 내에서 추출해 간다. 얼굴 구성요소의 특징점은 미리 정해진 위치에서 특징점을 결정한다. 그리고 이런 특징점간의 상호 연관관계를 설정한다.
이 논문에서는 커널 Edge Map 방식의 얼굴의 특징점을 검출하는 방법과 Adaboost를 이용한 얼굴의 특징점을 검출하는 방법을 이용하여 좀 더 강인한 얼굴의 특징점을 검출해 낸다. 커널 Edge Map을 이용한 방법은 기존의 10개의 커널을 이용하여 검출된 Edge를 이용하지 않고 좀 더 빠르게 검출해내기 위해 2개의 커널을 이용하여 얼굴의 특징점을 검출해 낸다. 이렇게 만들어진 얼굴의 특징점 후보군들에서 Adaboost를 이용하여 좀 더 정확하고 빠른 특징점을 찾을 수 있게 된다. Adaboost를 이용한 방법은 각각의 특징점들을 오프라인 상에서 학습을 하고 실시간으로 특징점을 검출하는 방법을 사용하였다. Edge를 이용한 방법으로 이미지의 전처리를 하여 후보군을 찾고 그 후보군과 Adaboost를 이용한 후보군들의 조합으로 인해 좀 더 강인하게 얼굴의 특징점을 찾을 수 있다.
본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.
사람의 얼굴은 일반 객체와는 다르게 정확히 구별되는 특징이 없다. 따라서 일반적으로 사람 얼굴에 관한 연구에서는 인간이 사람의 얼굴을 볼 대 가장 먼저 인식을 하는 눈, 코, 입을 특징으로 정하고 있다. 이러한 특징은 사람에 따라 다르게 나타나며 주위환경에 영향을 받는다. 따라서 이러한 사람의 특징을 정확히 찾아내는 것이 중요하다. 본 논문에서는 얼굴 특징점의 기하학적 성질을 이용하여 눈, 코, 입의 특징점을 효율적으로 찾아내는 알고리즘을 제안하고 있다. 이러한 특징점을 이용해서 얼굴 특징점 벡터와 얼굴 특징점 영상을 얻어낸다. 이 후 임의 입력 사람 얼굴에 대해서 얼굴 특징점 벡터의 유클리디안 거리와 밀 기록된 특징점 영상과의 상관관계를 이용해 유사도를 계산해서 얼굴을 인식한다. 제안하는 방법은 기존의 방법보다 계산 복잡도가 적으며 또한 정확한 인식을 얻는다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1999.11b
/
pp.15-20
/
1999
본 논문에서는 사람의 정면 얼굴을 찍은 컬러 동영상에서 얼굴의 각 구성 요소에 대한 특징점들을 추출하여 3차원 개인 얼굴 모델을 생성하고 이를 얼굴의 표정 움직임에 따라 애니메이션 하는 방법을 제시한다. 제안된 방법은 얼굴의 정면만을 촬영하도록 고안된 헬멧형 카메라( Head-mounted camera)를 사용하여 얻은 2차원 동영상의 첫 프레임(frame)으로부터 얼굴의 특징점들을 추출하고 이들과 3차원 일반 얼굴 모델을 바탕으로 3차원 얼굴 특징점들의 좌표를 산출한다. 표정의 변화는 초기 영상의 특징점 위치와 이 후 영상들에서의 특징점 위치의 차이를 기반으로 알아낼 수 있다. 추출된 특징점 및 얼굴 움직임은 보다 다양한 응용 이 가능하도록 최근 1단계 표준이 마무리된 MPEG-4 SNHC의 FDP(Facial Definition Parameters)와FAP(Facial Animation Parameters)의 형식으로 표현되며 이를 이용하여 개인 얼굴 모델 및 애니메이션을 수행하였다. 제안된 방법은 단일 카메라로부터 촬영되는 영상을 기반으로 이루어지는 MPEG-4 기반 화상 통신이나 화상 회의 시스템 등에 유용하게 사용될 수 있다.
Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
The Journal of the Korea Contents Association
/
v.7
no.2
/
pp.1-10
/
2007
In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.89-90
/
2017
본 논문에서는 평균이동 (mean shift) 기법을 이용하여 랜덤포레스트 (random forest) 기반 실시간 얼굴 특징점 추적 (facial features tracking) 방법을 제안한다. 우선, 눈의 위치를 이용하여 검출된 얼굴영역을 적절한 크기와 위치로 개선하여 랜덤포레스트를 이용한 얼굴 특징점 추적 알고리즘이 받는, 얼굴검출 (face detection) 과정에 얻어지는 얼굴영역 상자 (face bounding box) 크기와 위치의 영향을 감소 하였다. 또한 랜덤포레스트의 얼굴 특징점 추정결과에서 추정평균 대신 평균이동기법을 이용하여 잘못된 추정결과들을 제거하고 제대로 된 추정결과만 사용하여 얼굴 특징점 검출 정확도를 개선하였다. 따라서 제안하는 방법들을 이용하여 기존의 랜덤포레스트 기반 얼굴 특징점 검출 기법의 성능을 제고하고 실시간으로 얼굴 특징점을 추적할 수 있다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.1
/
pp.117-122
/
2005
This paper proposes an algorithm for Facial Characteristic Point(FCP) extraction. The FCP plays an important role in expression representation for face animation, avatar mimic or facial expression recognition. Conventional algorithms extract the FCP with an expensive motion capture device or by using markers, which give an inconvenience or a psychological load to experimental person. However, the proposed algorithm solves the problems by using only image processing. For the efficient FCP extraction, we analyze and improve the conventional algorithms detecting facial components, which are basis of the FCP extraction.
Proceedings of the Korea Information Processing Society Conference
/
2004.11a
/
pp.887-890
/
2004
임의 영상에서 얼굴 영역을 검출하고 얼굴 특징점 정보를 획득하는 기술은 얼굴 인식 및 표정 인식 시스템에서 중요한 역할을 한다. 본 논문은 색도 정보와 Top-hat 연산을 이용함으로써 얼굴의 유효 특징점을 효과적으로 검출할 수 있는 방법을 제안한다. 제안한 방법은 얼굴 영역 검출, 눈/눈썹 특징추출, 입술 특징추출의 세 과정으로 나눈다. 얼굴 영역은 $YC_{b}C_{r}$을 이용하여 피부색 영역을 추출한 후 모폴로지 연산과 분할을 통해 획득하고, 눈/눈썹 특징점은 BWCD(Black & White Color Distribution) 변환과 Top-hat 연산을 이용하며. 입술 특징점은 눈/눈썹과의 지정학적 상관관계와 입술 색상분포를 이용하는 방법을 사용한다. 실험을 수행한 결과. 제안한 방법이 다양한 영상에 대해서도 효과적으로 얼굴의 유효 특징점을 검출할 수 있음을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.489-493
/
2006
이 논문에서는 커널 에지 방식의 얼굴의 특징점을 추출하는 방법과 Adaboost를 이용한 얼굴의 특징점을 추출하는 방법에 대해서 비교 한다. 커널 에지를 이용한 방법은 10개의 커널을 이용하여 추출된 에지를 이용하여 얼굴의 특징점을 추출해 낸다. 커널의 개수를 줄여 사용한다면 실시간에 가능하고, 정확성을 높이기 위해서는 이미지의 전처리 단계에서 자극적인 효과를 준다면 정확성 또한 높아 질 것이다. 반면에 Adaboost를 이용한 방법은 각각의 특징점들을 오프라인 상에서 학습을 하고 온라인상에서 실시간으로 특징점을 추출하는 방법을 사용하였다. 각 각의 학습과정에 있어서 positive, negative 이미지를 더 많이 사용한다면 정확성이 더 높아질 것이다. 한 가지 주목할 만 한 점은 입과 같은 특징점을 추출하기 어려운 영역에서도 높은 정확성을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.