• Title/Summary/Keyword: 얼굴의 특징점

Search Result 314, Processing Time 0.023 seconds

A Study on Extraction of Face Region and Facial Characteristics Point (얼굴 영역 및 구성 요소의 특징점 추출에 관한 연구)

  • 김성식;김진태;김동욱
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.291-294
    • /
    • 2002
  • 본 논문은 얼굴 영역 및 얼굴 구성 요소의 얼굴 특징점을 추출하는 방법을 제안한다. 얼굴 특징점은 얼굴 인식을 하는데 있어서 중요한 자료이다. 얼굴 영역은 객체 단위 추출 방법을 사용하여 얼굴의 고유 영역만을 추출한다. 얼굴의 구성요소는 각 요소간의 기하학적 정보를 이용하여 얼굴 영역 내에서 추출해 간다. 얼굴 구성요소의 특징점은 미리 정해진 위치에서 특징점을 결정한다. 그리고 이런 특징점간의 상호 연관관계를 설정한다.

  • PDF

Robust Facial Feature Detection with Edge Map and Adaboost (Egde Map과 Adaboost를 이용한 강인한 얼굴 특징점 검출)

  • Shin, Gil-Su;Kim, Yong-Guk
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.761-766
    • /
    • 2007
  • 이 논문에서는 커널 Edge Map 방식의 얼굴의 특징점을 검출하는 방법과 Adaboost를 이용한 얼굴의 특징점을 검출하는 방법을 이용하여 좀 더 강인한 얼굴의 특징점을 검출해 낸다. 커널 Edge Map을 이용한 방법은 기존의 10개의 커널을 이용하여 검출된 Edge를 이용하지 않고 좀 더 빠르게 검출해내기 위해 2개의 커널을 이용하여 얼굴의 특징점을 검출해 낸다. 이렇게 만들어진 얼굴의 특징점 후보군들에서 Adaboost를 이용하여 좀 더 정확하고 빠른 특징점을 찾을 수 있게 된다. Adaboost를 이용한 방법은 각각의 특징점들을 오프라인 상에서 학습을 하고 실시간으로 특징점을 검출하는 방법을 사용하였다. Edge를 이용한 방법으로 이미지의 전처리를 하여 후보군을 찾고 그 후보군과 Adaboost를 이용한 후보군들의 조합으로 인해 좀 더 강인하게 얼굴의 특징점을 찾을 수 있다.

  • PDF

3D Facial Model Expression Creation with Head Motion (얼굴 움직임이 결합된 3차원 얼굴 모델의 표정 생성)

  • Kwon, Oh-Ryun;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1012-1018
    • /
    • 2007
  • 본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.

  • PDF

An Efficient Algorithm of Face Recognition Using Facial Feature Vectors (얼굴 특징 벡터를 이용한 효율적인 얼굴 인식 알고리즘)

  • 전승철;박성한
    • Journal of Broadcast Engineering
    • /
    • v.3 no.2
    • /
    • pp.164-171
    • /
    • 1998
  • 사람의 얼굴은 일반 객체와는 다르게 정확히 구별되는 특징이 없다. 따라서 일반적으로 사람 얼굴에 관한 연구에서는 인간이 사람의 얼굴을 볼 대 가장 먼저 인식을 하는 눈, 코, 입을 특징으로 정하고 있다. 이러한 특징은 사람에 따라 다르게 나타나며 주위환경에 영향을 받는다. 따라서 이러한 사람의 특징을 정확히 찾아내는 것이 중요하다. 본 논문에서는 얼굴 특징점의 기하학적 성질을 이용하여 눈, 코, 입의 특징점을 효율적으로 찾아내는 알고리즘을 제안하고 있다. 이러한 특징점을 이용해서 얼굴 특징점 벡터와 얼굴 특징점 영상을 얻어낸다. 이 후 임의 입력 사람 얼굴에 대해서 얼굴 특징점 벡터의 유클리디안 거리와 밀 기록된 특징점 영상과의 상관관계를 이용해 유사도를 계산해서 얼굴을 인식한다. 제안하는 방법은 기존의 방법보다 계산 복잡도가 적으며 또한 정확한 인식을 얻는다.

  • PDF

2D Image-Based Individual 3D Face Model Generation and Animation (2차원 영상 기반 3차원 개인 얼굴 모델 생성 및 애니메이션)

  • 김진우;고한석;김형곤;안상철
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.15-20
    • /
    • 1999
  • 본 논문에서는 사람의 정면 얼굴을 찍은 컬러 동영상에서 얼굴의 각 구성 요소에 대한 특징점들을 추출하여 3차원 개인 얼굴 모델을 생성하고 이를 얼굴의 표정 움직임에 따라 애니메이션 하는 방법을 제시한다. 제안된 방법은 얼굴의 정면만을 촬영하도록 고안된 헬멧형 카메라( Head-mounted camera)를 사용하여 얻은 2차원 동영상의 첫 프레임(frame)으로부터 얼굴의 특징점들을 추출하고 이들과 3차원 일반 얼굴 모델을 바탕으로 3차원 얼굴 특징점들의 좌표를 산출한다. 표정의 변화는 초기 영상의 특징점 위치와 이 후 영상들에서의 특징점 위치의 차이를 기반으로 알아낼 수 있다. 추출된 특징점 및 얼굴 움직임은 보다 다양한 응용 이 가능하도록 최근 1단계 표준이 마무리된 MPEG-4 SNHC의 FDP(Facial Definition Parameters)와FAP(Facial Animation Parameters)의 형식으로 표현되며 이를 이용하여 개인 얼굴 모델 및 애니메이션을 수행하였다. 제안된 방법은 단일 카메라로부터 촬영되는 영상을 기반으로 이루어지는 MPEG-4 기반 화상 통신이나 화상 회의 시스템 등에 유용하게 사용될 수 있다.

  • PDF

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

Real Time Face Tracking Method based Random Regression Forest using Mean Shift (평균이동 기법을 이용한 랜덤포레스트 기반 실시간 얼굴 특징점 추적)

  • Zhang, Xingjie;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.89-90
    • /
    • 2017
  • 본 논문에서는 평균이동 (mean shift) 기법을 이용하여 랜덤포레스트 (random forest) 기반 실시간 얼굴 특징점 추적 (facial features tracking) 방법을 제안한다. 우선, 눈의 위치를 이용하여 검출된 얼굴영역을 적절한 크기와 위치로 개선하여 랜덤포레스트를 이용한 얼굴 특징점 추적 알고리즘이 받는, 얼굴검출 (face detection) 과정에 얻어지는 얼굴영역 상자 (face bounding box) 크기와 위치의 영향을 감소 하였다. 또한 랜덤포레스트의 얼굴 특징점 추정결과에서 추정평균 대신 평균이동기법을 이용하여 잘못된 추정결과들을 제거하고 제대로 된 추정결과만 사용하여 얼굴 특징점 검출 정확도를 개선하였다. 따라서 제안하는 방법들을 이용하여 기존의 랜덤포레스트 기반 얼굴 특징점 검출 기법의 성능을 제고하고 실시간으로 얼굴 특징점을 추적할 수 있다.

  • PDF

Facial Characteristic Point Extraction for Representation of Facial Expression (얼굴 표정 표현을 위한 얼굴 특징점 추출)

  • Oh, Jeong-Su;Kim, Jin-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.117-122
    • /
    • 2005
  • This paper proposes an algorithm for Facial Characteristic Point(FCP) extraction. The FCP plays an important role in expression representation for face animation, avatar mimic or facial expression recognition. Conventional algorithms extract the FCP with an expensive motion capture device or by using markers, which give an inconvenience or a psychological load to experimental person. However, the proposed algorithm solves the problems by using only image processing. For the efficient FCP extraction, we analyze and improve the conventional algorithms detecting facial components, which are basis of the FCP extraction.

Facial-feature Detection using Chrominance Components and Top-hat Operation (색도 정보와 Top-hat 연산을 이용한 얼굴 특징점 검출)

  • Boo Hee-Hyung;Lee Wu-Ju;Lim Ok-Hyun;Lee Bae-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.887-890
    • /
    • 2004
  • 임의 영상에서 얼굴 영역을 검출하고 얼굴 특징점 정보를 획득하는 기술은 얼굴 인식 및 표정 인식 시스템에서 중요한 역할을 한다. 본 논문은 색도 정보와 Top-hat 연산을 이용함으로써 얼굴의 유효 특징점을 효과적으로 검출할 수 있는 방법을 제안한다. 제안한 방법은 얼굴 영역 검출, 눈/눈썹 특징추출, 입술 특징추출의 세 과정으로 나눈다. 얼굴 영역은 $YC_{b}C_{r}$을 이용하여 피부색 영역을 추출한 후 모폴로지 연산과 분할을 통해 획득하고, 눈/눈썹 특징점은 BWCD(Black & White Color Distribution) 변환과 Top-hat 연산을 이용하며. 입술 특징점은 눈/눈썹과의 지정학적 상관관계와 입술 색상분포를 이용하는 방법을 사용한다. 실험을 수행한 결과. 제안한 방법이 다양한 영상에 대해서도 효과적으로 얼굴의 유효 특징점을 검출할 수 있음을 확인하였다.

  • PDF

Comparition between Two Facial Feature Detection Methods (대표적 얼굴 특징점 추출 방법에 대한 비교분석)

  • Shin, Gil-Su;Kim, Yong-Guk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.489-493
    • /
    • 2006
  • 이 논문에서는 커널 에지 방식의 얼굴의 특징점을 추출하는 방법과 Adaboost를 이용한 얼굴의 특징점을 추출하는 방법에 대해서 비교 한다. 커널 에지를 이용한 방법은 10개의 커널을 이용하여 추출된 에지를 이용하여 얼굴의 특징점을 추출해 낸다. 커널의 개수를 줄여 사용한다면 실시간에 가능하고, 정확성을 높이기 위해서는 이미지의 전처리 단계에서 자극적인 효과를 준다면 정확성 또한 높아 질 것이다. 반면에 Adaboost를 이용한 방법은 각각의 특징점들을 오프라인 상에서 학습을 하고 온라인상에서 실시간으로 특징점을 추출하는 방법을 사용하였다. 각 각의 학습과정에 있어서 positive, negative 이미지를 더 많이 사용한다면 정확성이 더 높아질 것이다. 한 가지 주목할 만 한 점은 입과 같은 특징점을 추출하기 어려운 영역에서도 높은 정확성을 보였다.

  • PDF