• Title/Summary/Keyword: 언어 식별

Search Result 162, Processing Time 0.023 seconds

Methodology for semi-autonomous rule extraction based on Restricted Language Set and ontology (제한된 언어집합과 온톨로지를 활용한 반자동적인 규칙생성 방법 연구)

  • Son, Mi-Ae;Choe, Yun-Gyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.297-306
    • /
    • 2007
  • 지능정보시스템 구축에 있어서 자동화가 어려운 단계중의 하나인 규칙 습득을 위해 활용되는 방법중의 하나가 제한된 언어집합 기법을 이용하는 것이다. 그러나 제한된 언어집합 기법을 이용해 규칙을 생성하기 위해서는 규칙을 구성하는 변수와 그 값들에 대한 정보가 사전에 정의되어 있어야 하는데, 유동성이 큰 웹 환경에서 예상 가능한 모든 변수와 그 값을 사전에 정의하는 것이 매우 어렵다. 이에 본 연구에서는 이러한 한계를 극복하기 위해 제한된 언어집합 기법과 온톨로지를 이용한 규칙 생성 방법론을 제시하였다. 이를 위해 지식의 습득 대상이 되는 특정 문장은 문법구조 분석기를 이용해 파싱을 수행하며, 파싱된 단어들을 이용해 규칙의 구성 요소인 변수와 그 값을 식별한다. 그러나 규칙을 내포한 자연어 문장의 불완전성으로 인해 변수가 명확하지 않거나 완전히 빠져 있는 경우가 흔히 발생하며, 이로 인해 온전한 형식의 규칙 생성이 어렵게 된다. 이 문제는 도메인 온톨로지의 생성을 통해 해결하였다. 이 온톨로지는 특정 도메인을 구성하고 있는 개념들간의 관계를 포함하고 있다는 점에서는 기존의 온톨로지와 유사하지만, 규칙을 완성하는 과정에서 사용된 개념들의 사용빈도를 기반으로 온톨로지의 구조를 변경하고, 결과적으로 더 정확한 규칙의 생성을 지원한다는 점에서 기존의 온톨로지와 차별화된다. 이상의 과정을 통해 식별된 규칙의 구성요소들은 제한된 언어집합 기법을 이용해 구체화된다. 본 연구에서 제안하는 방법론을 설명하기 위해 임의의 인터넷 쇼핑몰에서 수행되는 배송관련 웹 페이지를 선정하였다. 본 방법론은 XRML에서의 지식 습득 과정의 효율성 제고에 기여할 수 있을 것으로 기대된다.

  • PDF

음성정보처리기술 응용서비스

  • 구명완;김재인
    • Korea Information Processing Society Review
    • /
    • v.11 no.2
    • /
    • pp.17-24
    • /
    • 2004
  • 음성정보처리 기술은 사람의 말을 음향, 언어, 심리학 및 공학적인 측면에서 연구하여 사람과 기계사이의 인터페이스를 자연스럽게 하는 것을 목표로 하고 있으며, 음성인식, 음성합성 및 언어처리 기술로 이루어져 있다. 음성인식기술이란 사람의 말을 이해하는 것뿐만 아니라 화자를 식별하고 인증하는 기술도 포함하고 있으며, 음성합성 기술이란 문자로부터 음성을 생성하는 기술을 의미한다. 그리고 언어처리 기술은 음성인식, 음성합성기술 속에 포함될 수 있으나 최근 마크업 언어를 활용하여 음성인식, 합성 등을 제어하는 경향이 도래함에 따라 언어처리 기술을 따로 분류하기도 한다[1][2].(중략)

  • PDF

Effect of Rule Identification in Acquiring Rules from Web Pages (웹 페이지의 내재 규칙 습득 과정에서 규칙식별 역할에 대한 효과 분석)

  • Kang, Ju-Young;Lee, Jae-Kyu;Park, Sang-Un
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.123-151
    • /
    • 2005
  • In the world of Web pages, there are oceans of documents in natural language texts and tables. To extract rules from Web pages and maintain consistency between them, we have developed the framework of XRML(extensible Rule Markup Language). XRML allows the identification of rules on Web pages and generates the identified rules automatically. For this purpose, we have designed the Rule Identification Markup Language (RIML) that is similar to the formal Rule Structure Markup Language (RSML), both as pares of XRML. RIML is designed to identify rules not only from texts, but also from tables on Web pages, and to transform to the formal rules in RSは syntax automatically. While designing RIML, we considered the features of sharing variables and values, omitted terms, and synonyms. Using these features, rules can be identified or changed once, automatically generating their corresponding RSML rules. We have conducted an experiment to evaluate the effect of the RIML approach with real world Web pages of Amazon.com, BamesandNoble.com, and Powells.com We found that $97.7\%$ of the rules can be detected on the Web pages, and the completeness of generated rule components is $88.5\%$. This is good proof that XRML can facilitate the extraction and maintenance of rules from Web pages while building expert systems in the Semantic Web environment.

  • PDF

Maximal Length Noun Phrase Identification Based on Punctuations and Expanded Chunk (문장부호 정보와 확장된 청크에 기반한 중국어 최장명사구 식별)

  • Bai, Xue-Mei;Jin, Mei-Xun;Li, Jin-Ji;Chung, You-Jin;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.112-119
    • /
    • 2005
  • 명사구는 기본명사구와 최장명사구로 분류된다. 최장명사구에 대한 정확한 식별은 문장의 전체적인 구문구조를 파악하고 문장의 정확한 지배용언을 찾아내는데 중요한 역할을 수행한다. 본 논문에서는 확장된 청크(chunk) 개념과 다섯 개의 클래스로 세분화된 문장부호 정보를 사용한 최장명사구 식별 기법을 제안한다. 제안된 기법은 기본모델(baseline)보다 4.05% 향상된 평균 88.63%의 우수한 F-measure 성능을 보인다.

  • PDF

Methodology of Trigger Generation optimized for Dialogue Relation Extraction task (대화형 관계 추출 태스크에 최적화된 트리거 생성 방법론)

  • Gyeongmin Kim;Junyoung Son;Jinsung Kim;Jaechoon Jo;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.374-378
    • /
    • 2022
  • 대화형 관계 추출의 목표는 주어진 대화에서 두 개체 간의 관계를 식별하는 것이다. 대화 중에 화자는 개체 및 관계와 관련이 있는 단서인 트리거를 통해 특정 개체 간 관계를 식별하는 것에 힌트를 얻을 수 있다. 그러나 데이터에 대해 항상 트리거 정보가 존재하는 것이 아니므로 트리거를 활용해 성능을 향상시키는 것은 어렵다. 본 논문은 이 문제점을 해소하기 위해 대화, 개체, 관계 중심으로 트리거 생성 모델을 학습하고, 이를 통해 생성된 트리거를 대화형 관계 추출에 학습하여 관계 식별에 효과적인 성능 향상을 보이는 접근법을 제안한다. 제안하는 접근법은 대화형 관계 추출 태스크에서 기존 성능과 비교한 결과 Dev, Test에서 각각 F1 19.74%p, F1 15.53%p 의 성능 향상을 보였다.

  • PDF

Two-Level Machine Learning Approach to Identify Maximal Noun Phrase in Chinese (두 단계 학습을 통한 중국어 최장명사구 자동식별)

  • Yin, Chang-Hao;Lee, Yong-Hun;Jin, Mei-Xun;Kim, Dong-Il;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.53-61
    • /
    • 2004
  • 일반적으로 중국어의 명사구는 기본명사구(base noun phrase), 최장명사구(maximal noun phrase) 등으로 분류된다. 최장명사구에 대한 정확한 식별은 문장의 전체적인 구조를 파악하고 정확한 구문 트리(parse tree)를 찾아내는데 중요한 역할을 한다. 본 논문은 두 단계 학습모델을 이용하여 최장명사구 자동식별을 진행한다. 먼저 기본명사구, 기본동사구, 기본형용사구, 기본부사구, 기본수량사구, 기본단문구, 기본전치사구, 기본방향사구 등 8가지 기본구를 식별한다. 다음 기본구의 중심어(head)를 추출해 내고 이 정보를 이용하여 최장명사구의 식별을 진행한다. 본 논문에서 제안하는 방법은 기존의 단어레벨의 접근방법과는 달리구레벨에서 학습을 진행하기 때문에 주변문맥의 정보를 많이 고려해야 하는 최장명사구 식별에 있어서 아주 효과적인 접근방법이다. 후처리 작업을 하지 않고 기본구의 식별에서 25개 기본구 태그의 평균 F-measure가 96%, 평균길이가 7인 최장명사구의 식별에서 4개 태그의 평균 F-measure가 92.5%로 좋은 성능을 보여주었다.

  • PDF

A Study on Identifying Personal Information on Conversational Text Data (대화형 텍스트 데이터 내 개인정보 식별에 대한 연구)

  • Cha, Do Hyun;Kown, Bo Keun;Youn, Hee Chang;Lee, Gu Hyup;Joo, Jong Wha J.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.11-13
    • /
    • 2022
  • 데이터 3 법을 필두로, 기업은 개인정보가 포함된 데이터를 활용하기 위해 비식별 처리가 필요하게 되었다. 기존 방식은, 비정형 텍스트 데이터에서 정규표현식을 통한 개인정보 식별은 데이터의 다양성에 의해 한계가 명확하며, 기존의 Named Entity Recognition(NER) 태스크로 해결하기에는 언어의 중의적 표현과 2 인 대화에서 나타나는 개인정보가 누구의 것인지 판단하지 못한다는 한계가 존재한다. 따라서 우리는 기존의 한계점을 극복하고 개선하기 위해 BERT 언어 모델에 화자 정보를 학습시키고, 하나의 어절에 2 개의 tag 를 labeling 하는 방법을 제안하여 정확한 개인정보 식별을 시도하였다.

확장형 규칙 표식 언어(eXtensible Rule Markup Language): 설계 원리 및 응용

  • 이재규;손미애;강주영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.284-293
    • /
    • 2002
  • XML(eXtensible Markup Language, XML)은 인터넷에서의 자료 교환을 위해 고안된 언어이다. 본 논문에서는 XML의 개념을 발전시킨 확장형 규칙 표식 언어(extensible Rule Markup Language, XRML)를 제안하고 있다. XRML은 웹 페이지에 내재된 암묵적 규칙의 식별, 구조적인 규칙으로의 변환, 사람과 소프트웨어 에이전트간의 지식 공유를 가능하게 하며, 이를 통해 지식기반시스템(Knowledge Based System)과 지식관리시스템(Knowledge Management System)의 통합을 실현할 수 있는 새로운 언어가 될 것이다. 본 고에서는 XRML이 이상과 같은 능력을 갖기 위해 반드시 갖춰야 할 6가지 설계 기준과, 이들 기준을 반영한 XRML 구성 요소로서 RIML(Rule Identification Markup Language), RSML(Rule Structure Markup Language)과 RTML(Rule Triggering Markup Language)을 설계하였으며, 개별 요소들의 기능 및 특성과 함께 태그와 DTD(Document Type Definition)도 식별하였다. 나아가 전술한 구조를 기반으로 하여 XRML을 워크플로우 시스템상의 폼처리에 적용한 Form/XRML이라는 프로토타입 시스템을 설계하고 구현하였다. 본 프로토타입의 개발을 통해, 지식기반시스템의 지식을 활용하는 RTML이 폼을 비롯한 다양한 응용시스템에 내재될 수 있으며, 웹 페이지의 암묵적 규칙과 지식기반시스템의 규칙이 일관성 있게 유지될 수 있음을 보여 주었다. 요컨대 본 연구는 XRML이 지능형 웹으로 발전하기 위한 새로운 도구이며, KBS와 US의 통합을 위한 중요한 도구임을 입증하였다는 점에서 큰 의의를 갖는다고 하겠다.

  • PDF

Cross-document Relation Extraction using Bridging Context Identification (중간 문맥 식별 및 검색을 활용한 문서간 관계 추출)

  • Junyoung Son;Jinsung Kim;Jungwoo Lim;Yoonna Jang;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.654-658
    • /
    • 2023
  • 관계 추출은 질의응답이나 대화 시스템의 기반이 되는 지식을 구추하기 위한 작업으로, 정보 추출의 기초가 되는 기술이기도 하다. 최근 실세계 지식의 희소한 형태를 구현한 문서간 관계 추출 데이터셋이 제안되어, 여러 문서를 통해 분산되어 언급된 두 개체 사이의 관계 추론을 수행 및 평가할 수 있게 되었다. 이 작업에서 추론의 대상이 되는 개체쌍은 한 문서 안에 동시에 언급되지 않기 때문에 여러 문서에 언급된 중간 개체를 통하여 직/간접적으로 추론해야 하나, 원시 텍스트에서 이러한 정보를 수집하는 작업은 쉽지 않다. 따라서, 본 연구에서는 개체의 동시발생빈도에 기반하여 중간 개체의 중요도를 정량화하고, 이 중요도에 기반화여 중요한 문맥을 식별하는 방법론을 제안한다. 제안하는 방법론은 기존의 두 문서로 구성된 추론 경로를 식별된 중간 개체를 활용하여 확장하여, 관계 추론 모델의 수정 없이 추가된 문맥만을 활용하여 문서간 관계 추출 시스템의 성능을 개선할 수 있었다.

  • PDF

Enhancing Multimodal Emotion Recognition in Speech and Text with Integrated CNN, LSTM, and BERT Models (통합 CNN, LSTM, 및 BERT 모델 기반의 음성 및 텍스트 다중 모달 감정 인식 연구)

  • Edward Dwijayanto Cahyadi;Hans Nathaniel Hadi Soesilo;Mi-Hwa Song
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.617-623
    • /
    • 2024
  • Identifying emotions through speech poses a significant challenge due to the complex relationship between language and emotions. Our paper aims to take on this challenge by employing feature engineering to identify emotions in speech through a multimodal classification task involving both speech and text data. We evaluated two classifiers-Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM)-both integrated with a BERT-based pre-trained model. Our assessment covers various performance metrics (accuracy, F-score, precision, and recall) across different experimental setups). The findings highlight the impressive proficiency of two models in accurately discerning emotions from both text and speech data.