• 제목/요약/키워드: 언어 감성 분석

검색결과 151건 처리시간 0.027초

MUSE 감성주석코퍼스를 활용한 문장 극성과 키워드 극성간의 불일치 현상에 대한 분석 (Evaluation of the Discordance between Sentence Polarities and Keyword Polarities by Using MUSE Sentiment-Annotated Corpora)

  • 조동희;신동혁;주희진;채병열;자오 원카이;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.195-200
    • /
    • 2016
  • 본 연구는 MUSE 감성 코퍼스를 활용하여 문장의 극성과 키워드의 극성이 얼마만큼 일치하고 일치하지 않은지를 분석함으로써 특히 문장의 극성과 키워드의 극성이 불일치하는 유형에 대한 연구의 필요성을 역설하고자 한다. 본 연구를 위하여 DICORA에서 구축한 MUSE 감성주석코퍼스 가운데 IT 리뷰글 도메인으로부터 긍정 1,257문장, 부정 1,935문장을, 맛집 리뷰글 도메인으로부터는 긍정 2,418문장, 부정 432문장을 추출하였다. UNITEX를 이용하여 LGG를 구축한 후 이를 위의 코퍼스에 적용하여 나타난 양상을 살펴 본 결과, 긍 부정 문장에서 반대 극성의 키워드가 실현된 경우는 두 도메인에서 약 4~16%의 비율로 나타났으며, 단일 키워드가 아닌 구나 문장 차원으로 극성이 표현된 경우는 두 도메인에서 약 25~40%의 비교적 높은 비율로 나타났음을 확인하였다. 이를 통해 키워드의 극성에 의존하기 보다는 문장과 키워드의 극성이 일치하지 않는 경우들, 가령 문장 전체의 극성을 전환시키는 극성전환장치(PSD)가 실현된 유형이나 문장 내 극성 어휘가 존재하지 않지만 구 또는 문장 차원의 극성이 표현되는 유형들에 대한 유의미한 연구가 수행되어야 비로소 신뢰할만한 오피니언 자동 분류 시스템의 구현이 가능하다는 것을 알 수 있다.

  • PDF

SNS 기반 여론 감성 분석 (Sentiment Analysis for Public Opinion in the Social Network Service)

  • 하상현;노태협
    • 문화기술의 융합
    • /
    • 제6권1호
    • /
    • pp.111-120
    • /
    • 2020
  • 본 연구는 소셜네트워크서비스(SNS)상의 빅데이터를 이용한 텍스트 분석기법의 응용으로서 설문 조사 기반의 여론 조사 방법론과 달리 비정형적 언어 기반의 감성 여론 조사 방법론을 제안한다. 기존의 설문 기반 여론 분석모형에 대한 대안적 방법으로 주관성에 기초한 감성 분류 모형을 이용하였다. 이를 위하여, 제20대 국회의원 선거운동 기간 중 선거 관련 실시간 트위터 자료를 수집하여 속성 기반 감성 분석을 이용한 여론의 극성과 강도에 대한 실증 분석을 수행하였다. 개별 SNS에서 사용된 단어의 극성을 분류하기 위해 Lasso 및 Ridge 회귀 모형을 이용하여 극성에 영향력이 큰 변수를 추출하였다. 추출된 변수가 극성에 미치는 긍정 및 부정에 대한 영향을 구분하고, 영향력의 강도를 분석하였다. 대중들이 소셜네트워크상에서 표현한 내용을 바탕으로 한 여론에 대한 긍정 및 부정의 감성 분석을 통해 여론의 향방을 예측하고 극성분석 모형의 정확도를 측정하여, 여론 조사 분야에서 감성 분석 방법론의 적용가능성을 확인하였다.

VAE와 CNN이 결합된 모델을 이용한 한국어 문장 생성과 감성 분석 (Korean Text Generation and Sentiment Analysis Using Model Combined VAE and CNN)

  • 김건영;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.430-433
    • /
    • 2018
  • 딥러닝 모델의 성능 향상을 위해 적은 데이터를 증가시킬 수 있는 연구들이 필요하다. 이미지의 경우 회전, 이동, 반전등의 연산으로 쉽게 데이터를 증가시킬 수 있지만 자연어는 그렇지 않다. 그러나 최근 딥러닝 생성 모델의 발전으로 기존 자연어 데이터를 생성 모델을 통해 양을 늘려 실험하는 연구들이 많이 시도되었다. 본 논문에서는 문장 데이터 생성을 위한 VAE, 문장 분류를 위한 CNN이 결합된 모델을 한국어 영화평 데이터에 적용하여 기존 모델보다 0.146% 높은 86.736%의 정확도를 기록하였다.

  • PDF

GMLP를 이용한 한국어 자연어처리 및 BERT와 정량적 비교 (GMLP for Korean natural language processing and its quantitative comparison with BERT)

  • 이성민;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.540-543
    • /
    • 2021
  • 본 논문에서는 Multi-Head Attention 대신 Spatial Gating Unit을 사용하는 GMLP[1]에 작은 Attention 신경망을 추가한 모델을 구성하여 뉴스와 위키피디아 데이터로 사전학습을 실시하고 한국어 다운스트림 테스크(감성분석, 개체명 인식)에 적용해 본다. 그 결과, 감성분석에서 Multilingual BERT보다 0.27%높은 Accuracy인 87.70%를 보였으며, 개체명 인식에서는 1.6%높은 85.82%의 F1 Score를 나타내었다. 따라서 GMLP가 기존 Transformer Encoder의 Multi-head Attention[2]없이 SGU와 작은 Attention만으로도 BERT[3]와 견줄만한 성능을 보일 수 있음을 확인할 수 있었다. 또한 BERT와 추론 속도를 비교 실험했을 때 배치사이즈가 20보다 작을 때 BERT보다 1에서 6배 정도 빠르다는 것을 확인할 수 있었다.

  • PDF

제품 사용 경험과 선호도에 따른 감성어휘의 표현 특성 (A Characteristic of Emotional Word According to Experience Using and Preference of Product)

  • 허성철
    • 감성과학
    • /
    • 제11권3호
    • /
    • pp.375-385
    • /
    • 2008
  • 본 연구에서는 인간의 제품에 대한 이미지 연상과 관련된 인지 반응 특성을 파악하고, 제품 선호도 및 경험과의 상관관계 분석을 목적으로 하였다. 이를 위하여, 휴대폰과 제안형 제품사진을 실험자극으로 선정하여, 연상되는 감성어휘를 표현하는 실험과 각 제품사진의 선호도를 평가하는 실험을 진행하였다. 실험 결과로부터 두 가지 결론이 도출되었다. 먼저, 사용 경험이 있는 제품에 대한 언어적 지각 반응에서는 비유 언어와 정서적 이미지의 표현을 혼용하며 선호도 수준이 높아짐에 따라 정서적 표현의 적용이 많아진다. 두 번째는, 제품의 비사용 경험은 선호도와 관계없이 인지 대상을 단지 지각적으로 이해하고 자신의 일반적 경험 정보와 유사성을 고려하여 대응시키는 반응을 유발한다.

  • PDF

기계학습 기반 국내 뉴스 헤드라인의 정확성 검증 연구 (Objectivity in Korean News Reporting : Machine Learning-Based Verification of News Headline Accuracy)

  • 백지수;이승언;한지영;차미영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.281-286
    • /
    • 2021
  • 뉴스 헤드라인에 제3자의 발언을 직접 인용해 전언하는 이른바 '따옴표 저널리즘'이 언론 보도의 객관주의 원칙을 해치는지는 언론학 및 뉴스 구독자에게 중요한 문제이다. 이 연구는 온라인 포털사이트를 통해 실시간 유통되는 한국어 기사의 정확성을 판별하기 위한 기계학습(Machine Learning) 모델을 제안한다. 이 연구에서 제안하는 모델은 Edit Distance와 FastText 기법을 활용해 기사 제목과 본문 내 인용구의 유사성을 측정하고, XGBoost 모델을 활용해 최종 분류한다. 아울러 이 모델을 통해 229만 건의 뉴스 헤드라인에 대해 직접 인용구가 포함된 기사가 취재원의 발언을 주관적인 윤색없이 독자들에게 전하고 있는지를 판별했다. 이뿐만 아니라 딥러닝 기반의 KoELECTRA 모델을 활용해 기사의 제목 내 인용구에 대한 감성 분석을 진행했다. 분석 결과, 윤색이 가미되지 않은 직접 인용형 기사의 비율이 지난 20년 동안 10% 이상 증가했으며, 기사 제목의 인용구에 나타나는 감정은 부정 감성이 긍정 감성의 2.8배 정도로 우세했다. 이러한 시도는 앞으로 계산사회과학 방법론과 빅데이터에 기반한 언론 보도의 평가 및 개선에 도움을 주리라 기대한다.

  • PDF

화장품 브랜드의 색체 디자인 컨셉 개발에 관한 방법론적 연구: 자연성 화장품 '프리메라'의 사례를 중심으로 (A Study on Methodology for developing Color Design Concepts for the Case of Cosmetic Brand 'Primera')

  • 권은숙;김유진;김종일;송경석;최유미
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.417-425
    • /
    • 2000
  • 시각적 의미의 개발에 바탕을 둔 색채 디자인 연구는 인간의 감성을 중시하는 새로운 패러다임을 맞이하여, 보다 확장적이고 다양한 연구로 발전되고 있다. 특히 화장품 브랜드의 개발과정에서 색채연구의 기능과 역할은 보다 새로운 차원으로 확대, 발전될 수 있는 가능성이 많다. 본 연구의 목적은 허브 식물이 가진 치료 효과와 심신을 편안하게 해주는 감성적 요인을 이용하여, 다차원적 감성을 활용한 색채 연구 방법론을 개발하고 이를 통한 자연성 화장품 브랜드의 이미지 전략을 수립하는데 있다. 허브 식물과 사용자 간의 감성적 교류에 대한 다차원적 특성은 '프리메라'라는 자연성 화장품 브랜드를 위한 감성적 이미지 개발 전략의 사례연구를 통하여 연구되었다. 본 사례 연구에서는 여성의 피부 특성에 따른 세 종류의 시각적/촉각적 색채 이미지 접근 방법을 분석하고, 이를 통한 활용 색체 팔레트를 개발함으로써 프리메라가 갖고 있는 브랜드의 이미지를 확고히 전달할 수 있는 감성 언어 체계를 개발하였다.

  • PDF

수학 담화에서 나타나는 교사의 감성적 언어 빈도 분석 (The Frequency Analysis of Teacher's Emotional Response in Mathematics Class)

  • 손복은;고호경
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제32권4호
    • /
    • pp.555-573
    • /
    • 2018
  • 본 연구는 텍스트 마이닝 기법을 활용하여 수학수업에서 나타나는 교사의 감성적 언어를 확인하고자 하였다. 이를 위해 우수 수업 동영상을 활용하여 수업에서 발생하는 교사의 수업 언어 데이터를 수집하였다. 추출한 비정형 데이터에 대한 분석 과정은 데이터 수집, 데이터 전처리, 텍스트 마이닝 분석의 세 가지 단계로 진행하였다. 분석 결과 수학 수업에서 오고가는 담화 중에서 교사의 감성적 반응을 나타내는 언어는 거의 나타나지 않았으며, 이를 통해 수업의 정의적 영역 측면에서의 시사점을 도출하였다.

Prefix-tuning에 기반한 한국어 자연언어 처리 (Prefix-tuning for Korean Natural language processing)

  • 민진우;나승훈;신동욱;김선훈;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.622-624
    • /
    • 2021
  • 현재 BERT와 같은 대용량의 코퍼스로부터 학습된 사전 학습 언어 모델을 자연어 응용 태스크에 적용하기 위해 일반적으로 널리 사용되는 방법은 Fine-tuning으로 각 응용 태스크에 적용 시 모델의 모든 파라미터를 조정하기 때문에 모든 파라미터를 조정하는데 필요한 시간적 비용과 함께 업데이트된 파라미터를 저장하기 위한 별도의 저장공간이 요구된다. 언어 모델이 커지면 커질수록 저장 공간의 비용이 증대됨에 따라 이러한 언어모델을 효율적으로 튜닝 할 수 있는 방법들이 연구되었다. 본 연구에서는 문장의 입력 임베딩에 연속적 태스크 특화 벡터인 prefix를 추가하여 해당 prefix와 관련된 파라미터만 튜닝하는 prefix-tuning을 한국어 네이버 감성 분석 데이터 셋에 적용 후 실험결과를 보인다.

  • PDF

BERT을 이용한 한국어 문장의 스타일 변화 (Controlled Korean Style Transfer using BERT)

  • 이주성;오연택;변현진;민경구
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.395-399
    • /
    • 2019
  • 생성 모델은 최근 단순히 기존 데이터를 증강 시키는 것이 아니라 원하는 속성을 가지도록 스타일을 변화시키는 연구가 활발히 진행되고 있다. 스타일 변화 연구에서 필요한 병렬 데이터 세트는 구축하는데 많은 비용이 들기 때문에 비병렬 데이터를 이용하는 연구가 주를 이루고 있다. 이러한 방법론으로 이미지 분야에서 대표적으로 cycleGAN[1]이 있으며 최근 자연어 처리 분야에서도 많은 연구가 진행되고 있다. 많은 논문들이 사용하는 데이터도메인은 긍정 문장과 부정 문장 사이를 변화시키는 것이다. 본 연구에서는 한국어 영화리뷰 데이터 세트인 NSMC[2]를 이용한 감성 변화를 하는 문장생성에 대한 연구로 자연어 처리에서 좋은 성능을 보여주는 BERT[8]를 생성모델에 이용하였다.

  • PDF