• 제목/요약/키워드: 언어표현

검색결과 2,132건 처리시간 0.031초

언어모델에서 엔티티 정보를 이용한 관계 추출 성능 향상 기법 (A Technique for Improving Relation Extraction Performance using Entity Information in Language Model)

  • 허윤아;오동석;황태선;이설화;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.124-127
    • /
    • 2020
  • 관계 추출은 문장에서 두 개의 엔티티가 주어졌을 때 두 개의 엔티티에 대한 의미적 이해를 통해 관계를 분류하는 작업이다. 이와 같이 관계 추출에서 관계를 분류하기 위해서는 두 개의 엔티티에 대한 정보가 필요하다. 본 연구에서는 관계 추출을 하기 위해 문장에서 엔티티들의 표현을 다르게하여 관계 추출의 성능을 비교 실험하였다. 첫번째로는 문장에서 [CLS] 토큰(Token)으로 관계를 분류하는 Standard 엔티티 정보 표현과 두번째로는 엔티티의 앞과 뒤에 Special Token을 추가하여 관계를 분류하는 Entity-Markers 엔티티 정보 표현했다. 이를 기반으로 문장의 문맥 정보를 학습한 사전 학습(Pre-trained)모델인 BERT-Large와 ALBERT-Large를 적용하여 실험을 진행하였다. 실험 결과 Special Token을 추가한 Entity-Markers의 성능이 높았으며, BERT-Large에서 더 높은 성능 결과를 확인하였다.

  • PDF

의미 정보와 BERT를 결합한 개념 언어 모델 (A Concept Language Model combining Word Sense Information and BERT)

  • 이주상;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-7
    • /
    • 2019
  • 자연어 표상은 자연어가 가진 정보를 컴퓨터에게 전달하기 위해 표현하는 방법이다. 현재 자연어 표상은 학습을 통해 고정된 벡터로 표현하는 것이 아닌 문맥적 정보에 의해 벡터가 변화한다. 그 중 BERT의 경우 Transformer 모델의 encoder를 사용하여 자연어를 표상하는 기술이다. 하지만 BERT의 경우 학습시간이 많이 걸리며, 대용량의 데이터를 필요로 한다. 본 논문에서는 빠른 자연어 표상 학습을 위해 의미 정보와 BERT를 결합한 개념 언어 모델을 제안한다. 의미 정보로 단어의 품사 정보와, 명사의 의미 계층 정보를 추상적으로 표현했다. 실험을 위해 ETRI에서 공개한 한국어 BERT 모델을 비교 대상으로 하며, 개체명 인식을 학습하여 비교했다. 두 모델의 개체명 인식 결과가 비슷하게 나타났다. 의미 정보가 자연어 표상을 하는데 중요한 정보가 될 수 있음을 확인했다.

  • PDF

말소리가 제한된 아동을 위한 말리듬을 이용한 난타 프로그램의 개발과 효과 (Development and effects of Nanta program using speech rhythm for children with limited speech sound production)

  • 박영혜;최성희
    • 말소리와 음성과학
    • /
    • 제13권2호
    • /
    • pp.67-76
    • /
    • 2021
  • 난타는 북과 같은 타악기를 이용한 "두드리기"라는 뜻으로 한국 전통 음악인 사물놀이의 리듬이다. 말소리 산출이 제한된 아이들을 위해 난타 프로그램이 개발되어 적용되었다. 또한, 이 연구는 언어 리듬을 이용한 난타 프로그램의 효과에 대한 증거를 제공한다. 난타 음성 리듬 중재 프로그램은 말리듬을 이용하여 개발되었다. 난타 프로그램은 청각 자극, 다양한 소리와 박자, 리듬을 제공했으며, 리듬과 함께 호흡, 발성, 조음의 세 단계로 구성되어 있다. 말소리 목록이 제한된 6명의 아이들이 이 연구에 참여했다. 아동들에게 소리와 박자를 탐색하고 소리와 박자를 자유롭게 표현하도록 하였다. 또한, 리듬과 함께 단어를 모방하고 모방하는 단어에서 음절의 길이를 늘림으로써 다양한 말소리를 산출하도록 격려하였다. 매 회당 40분 동안 주 2회씩 총 15회의 세션이 실시되었다. 중재 효과를 조사하기 위해 치료 전후 취학전 아동의 수용언어 및 표현언어 발달척도(PRES)와 수용-표현 어휘력 검사(REVT) 점수를 비교하였다. Wilcoxon rank test 결과, 중재 후 PRES에서 수용언어 점수(p=.027)와 표현언어 점수(p=.024) 및 수용어휘력(p=.028)과 표현어휘력 (p=.028) 점수가 유의하게 향상되었음을 보여주었다. 난타 리듬 컨트롤 프로그램은 수용적이고 표현적인 어휘와 언어 발달에 상당한 긍정적인 영향을 미쳤다. 이러한 발견들은 리듬 컨트롤 프로그램이 제한된 음성 소리 생성을 가진 어린이들의 언어 발달과 어휘 향상에 유용할 수 있다는 것을 암시한다.

위키피디아 QA를 위한 질의문의 정답제약 추출 (Answer Constraints Extraction on User Question for Wikipedia QA)

  • 왕지현;허정;이형직;배용진;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.248-250
    • /
    • 2017
  • 질의응답 시스템에서 정답을 제약하기 위한 위키피디아 영역의 정답제약 9개를 정의하고 질문 문장에서 제약표현을 추출하는 방법을 제안한다. 다어절의 정답제약 표현을 추출하기 위해서 언어분석 결과를 활용하여 정답제약 후보를 생성하며 후보단위로 정답제약 표현을 학습하기 위한 자질을 제시한다. 기계학습 방법을 이용하여 정답제약 후보 별로 정답제약 태그를 분류하여 정답제약 표현을 추출한다. 성능 실험은 각 정답제약 태그 별로 F1-Score 평가를 수행하였다.

  • PDF

토픽-코멘트 구조에 기반한 한국어 표층 생성기 (Korean Surface Realizer Based on Topic-Comment Structure)

  • 김정은;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.503-508
    • /
    • 2001
  • 본 논문은 자연언어생성 기술을 이용하여 질병에 대한 기술문을 생성해 내는 시스템에서 사용되는 표층 생성기에 대해서 다루고 있다. 표층 생성기는 문장의 추상적인 표현으로부터 통사적으로, 형태론적으로 올바른 텍스트로 생성하여 내는 것을 목표로 한다. 질병에 관한 기술문에 있는 문장들은 두가지 특징을 가지고 있다. 첫번째로, 질병 기술문의 문장들은 토픽-코멘트 구조로 나타내어질 수 있다. 두번째로, 같은 의미 범주에 속하는 문장들은 같은 토픽을 가진다. 따라서, 토픽은 의미범주로부터 유추될 수 있으므로 표층 생성기의 입력인 구 명세 (phrase specification)에 표현될 필요가 없다. 본 논문에서는 이런 특징을 이용하여 효율적인 표층 생성기를 만들기 위하여 표층 생성의 단계를 내부 표현 생성과 외부 문장 생성의 두 단계로 나누었다. 내부 표현 생성 단계에서는 코멘트에 해당하는 부분을 생성하고 외부 문장 생성 단계에서 의미범주 태그에 따라 토픽을 첨가하여 최종 문장으로 생성하였다. 이런 방법으로 실험한 결과, 본 표층 생성기는 문법에 맞으면서 자연스러운 텍스트를 생성해 낸다는 것을 알 수 있었다.

  • PDF

의미 중심어 주도 방식을 이용한 한국어 생성 시스템의 구현 (The Implementation of a Korean Generation System Using Semantic-Head-Driven Method)

  • 이상호;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1994년도 제6회 한글 및 한국어정보처리 학술대회
    • /
    • pp.434-438
    • /
    • 1994
  • 자연어 생성 시스템은 기계 변역이나 대화 시스템 등 여러 시스템의 인터페이스로 중요한 역할을 한다. 자연어 생성 시스템을 효율적으로 구축하고, 확장을 용이하게 하기 위해서는 해당언어의 생성에 필요한 정보를 효과적으로 표현할 수 있는 규칙 표현법이 필요하다. 본 논문은 한국어 생성에서 사용하는 격틀과 격틀 이외의 여러 정보를 표현할 수 있는 표현법을 제안하였다. 그리고 제안한 규칙을 수행하기 위해서 Shieber의 semantic-head-driven-generation방식[4]을 변형한 엔진을 구현하였다.

  • PDF

개체명 문맥의미표현 학습을 통한 기계 요약의 사실 불일치 교정 (Learning Contextual Meaning Representations of Named Entities for Correcting Factual Inconsistent Summary)

  • 박준모;노윤석;박세영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.54-59
    • /
    • 2020
  • 사실 불일치 교정은 기계 요약 시스템이 요약한 결과를 실제 사실과 일치하도록 만드는 작업이다. 실제 요약 생성연구에서 가장 공통적인 문제점은 요약을 생성할 때 잘못된 사실을 생성하는 것이다. 이는 요약 모델이 실제 서비스로 상용화 하는데 큰 걸림돌이 되는 부분 중 하나이다. 본 논문에서는 원문으로부터 개체명을 가져와 사실과 일치하는 문장으로 고치는 방법을 제안한다. 이를 위해서 언어 모델이 개체명에 대한 문맥적 표현을 잘 생성할 수 있도록 학습시킨다. 그리고 학습된 모델을 이용하여 원문과 요약문에 등장한 개체명들의 문맥적 표현 비교를 통해 적절한 단어로 교체함으로써 요약문의 사실 불일치를 해소한다. 제안 모델을 평가하기 위해 추상 요약 데이터를 이용해 학습데이터를 만들어 학습하고, 실제 시나리오에서 적용가능성을 검증하기 위해 모델이 요약한 요약문을 이용해 실험을 수행했다. 실험 결과, 자동 평가와 사람 평가에서 제안 모델이 비교 모델보다 높은 성능을 보여주었다.

  • PDF

바이오 마커와 질병 용어의 단어 표현 분석 (Word Representation Analysis of Bio-marker and Disease Word)

  • 윤영신;남경민;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.165-168
    • /
    • 2015
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다.

  • PDF

KoELECTRA를 활용한 챗봇 데이터의 혐오 표현 탐지 (Hate Speech Detection in Chatbot Data Using KoELECTRA)

  • 신민기;진효진;송현호;최정회;임현승;차미영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.518-523
    • /
    • 2021
  • 챗봇과 같은 대화형 에이전트 사용이 증가하면서 채팅에서의 혐오 표현 사용도 더불어 증가하고 있다. 혐오 표현을 자동으로 탐지하려는 노력은 다양하게 시도되어 왔으나, 챗봇 데이터를 대상으로 한 혐오 표현 탐지 연구는 여전히 부족한 실정이다. 이 연구는 혐오 표현을 포함한 챗봇-사용자 대화 데이터 35만 개에 한국어 말뭉치로 학습된 KoELETRA 기반 혐오 탐지 모델을 적용하여, 챗봇-사람 데이터셋에서의 혐오 표현 탐지의 성능과 한계점을 검토하였다. KoELECTRA 혐오 표현 분류 모델은 챗봇 데이터셋에 대해 가중 평균 F1-score 0.66의 성능을 보였으며, 오탈자에 대한 취약성, 맥락 미반영으로 인한 편향 강화, 가용한 데이터의 정확도 문제가 주요한 한계로 포착되었다. 이 연구에서는 실험 결과에 기반해 성능 향상을 위한 방향성을 제시한다.

  • PDF

대화형 인공지능을 위한 메신저 대화의 비윤리적 표현 연구 (Unethical Expressions in Messenger Talks for Interactive Artificial Intelligence)

  • 고예린;남길임;송현주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.22-25
    • /
    • 2022
  • 본 연구는 대화형 인공지능이 비윤리적 표현을 학습하거나 생성하는 것을 방지하기 위한 기초적 연구로, 메신저 대화에 나타나는 단어 단위, 구 단위 이상의 비윤리적 표현을 수집하고 그 특성을 분석하였다. 비윤리적 표현은 '욕설, 혐오 및 차별 표현, 공격적 표현, 성적 표현'이 해당된다. 메신저 대화에 나타난 비윤리적 표현은 욕설이 가장 많은 비중을 차지했는데, 욕설에서는 비표준형뿐만 아니라 '존-', '미치다' 등과 같이 맥락을 고려하여 판단해야 하는 경우가 있다. 가장 높은 빈도로 나타난 욕설 '존나류, 씨발류, 새끼류'의 타입-토큰 비율(TTR)을 확인한 결과 '새끼류'의 TTR이 가장 높게 나타났다. 다음으로 메신저 대화에서는 공격적 표현이나 성적인 표현에 비해 혐오 및 차별 표현의 비중이 높았는데, '국적/인종'과 '젠더' 관련된 혐오 및 차별 표현이 특히 높게 나타났다. 혐오 및 차별 표현은 단어 단위보다는 구 단위 이상의 표현의 비중이 높았고 문장 단위로 떨어지기 보다는 대화 전체에 걸쳐 나타나는 것을 확인하였다. 따라서 혐오 및 차별 표현을 탐지하기 위해서는 단어 단위보다는 구 단위 이상 표현의 탐지에 대한 필요성이 있음을 학인하였다.

  • PDF