본 연구는 대부분의 언어 모델이 사용하고 있는 서브워드 토큰화 과정을 거치지 않고, 바이트 단위의 인코딩을 그대로 다룰 수 있는 토큰-프리 사전학습 언어모델에 대한 것이다. 토큰-프리 언어모델은 명시적인 미등록어 토큰이 존재하지 않고, 전 처리 과정이 단순하며 다양한 언어 및 표현 체계에 대응할 수 있는 장점이 있다. 하지만 관련 연구가 미흡, 서브워드 모델에 대비해 학습이 어렵고 낮은 성능이 보고되어 왔다. 본 연구에서는 한국어를 중심으로 토큰-프리 언어 이해-생성 모델을 사전 학습 후, 서브워드 기반 모델과 비교하여 가능성을 살펴본다. 또한, 토큰 프리 언어모델에서 지적되는 과도한 연산량을 감소시킬 수 있는 그래디언트 기반 서브워드 토크나이저를 적용, 처리 속도를 학습 2.7배, 추론 1.46배 개선하였다.
본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.
자바는 썬 마이크로시스템즈사의 제임스 고슬링(James Gosling)에 의해 고안된 언어로 운영체제 및 하드웨어 플랫폼에 독립적인 차세대 언어로 최근에 가장 널리 사용하는 범용 프로그래밍 언어 중 하나이다. 자바 프로그램은 컴파일러에 의해 각 플랫폼에 독립적인 중간 코드 형태의 바이트코드로 변환된 클래스 파일로 생성되면 JVM(Java Virtual Machine)에 의해 실행된다. 마이크로소프트사의 .NET 플랫폼과 C# 언어는 프로그래머들의 요구를 충족시키고 썬사의 JVM 환경과 자바 언어에 대응하기 위해서 개발된 플랫폼과 언어이다. C#과 같은 .NET 언어는 컴파일러에 의해 MSIL(MicroSoft Intermediate Language) 코드로 번역되며 번역된 MSIL 코드는 .NET 플랫폼 환경에서 런타임 엔진인 CLR(Common Language Runtime)에 의해 실행이 된다. 자바로 작성된 프로그램은 JVM 플랫폼에서는 실행이 되지만 .NET 플랫폼에서 실행이 되지 않고, 반대로 C#과 같은 .NET 언어로 작성된 프로그램은 .NET 플랫폼에서는 실행이 되지만 JVM 플랫폼에서 실행이 되지 않는다. 이런 이유로 본 논문에서는 자바소스를 컴파일하여 생성된 클래스 파일에서 Oolong 코드를 생성하고 생성된 Oolong 코드를 .NET의 MSIL 코드로 변환하여 자바로 구현된 프로그램이 .NET 환경에서 실행되도록 하는 Bytecode-to-MSIL 번역기 시스템을 구현하였다. 따라서, 자바 프로그래머는 JVM이나 .NET 플랫폼 환경에 관계없이 프로그램을 작성하여 실행시킬 수 있다. 번역기 시스템의 구현을 정형화하기 위해 Oolong 코드의 명령어들을 문법으로 작성하였으며, PGS를 통해 생성된 어휘 정보를 가지고 스캐너를 구성하였으며, 파싱테이블을 가지고 파서를 설계하였다. 파서의 출력으로 AST가 생성되면 번역기는 AST를 탐색하면서 의미적으로 동등한 MSIL 코드를 생성하도록 시스템을 컴파일러 기법을 이용하여 모듈별로 구성하였다.
본 논문은 자연언어생성 기술을 이용하여 질병에 대한 기술문을 생성해 내는 시스템에서 사용되는 표층 생성기에 대해서 다루고 있다. 표층 생성기는 문장의 추상적인 표현으로부터 통사적으로, 형태론적으로 올바른 텍스트로 생성하여 내는 것을 목표로 한다. 질병에 관한 기술문에 있는 문장들은 두가지 특징을 가지고 있다. 첫번째로, 질병 기술문의 문장들은 토픽-코멘트 구조로 나타내어질 수 있다. 두번째로, 같은 의미 범주에 속하는 문장들은 같은 토픽을 가진다. 따라서, 토픽은 의미범주로부터 유추될 수 있으므로 표층 생성기의 입력인 구 명세 (phrase specification)에 표현될 필요가 없다. 본 논문에서는 이런 특징을 이용하여 효율적인 표층 생성기를 만들기 위하여 표층 생성의 단계를 내부 표현 생성과 외부 문장 생성의 두 단계로 나누었다. 내부 표현 생성 단계에서는 코멘트에 해당하는 부분을 생성하고 외부 문장 생성 단계에서 의미범주 태그에 따라 토픽을 첨가하여 최종 문장으로 생성하였다. 이런 방법으로 실험한 결과, 본 표층 생성기는 문법에 맞으면서 자연스러운 텍스트를 생성해 낸다는 것을 알 수 있었다.
자연스러운 문장을 생성하는 것은 자연미 생성에서 중요하다. 자연스러운 문장은 개념과 화자의 의도에 의해서 이루어진다. 따라서, 화자의 의도를 반영할 수 있는 한국어 생성 시스템의 설계가 필요하다. 본 논문에서는 언어 현상을 바탕으로 얻은 사람의 발화 모델에 대하여 살펴보고 설정한 한국어의 기본격에 대한 무표어순을 고찰한 후, 이를 바탕으로 화자의 의도를 반영할 수 있는 생성 시스템을 설계한다. 그리고, 이 시스템에서 몇 가지 사람의 언어 행위가 재현되는 과정을 보인다.
언어학적 다양성을 가지는 고품질의 한국어 패러프레이즈 생성을 위해 패러프레이즈의 생성을 제어할 수 있는 제약이 필요하다. 원문을 패러프레이즈로 변경하기 위한 생성용 제약으로 6 개의 제약을 제시한다: 키워드 치환, 키워드 확장, 품사 변경, 패턴 변경, 구조 변경, 키워드 리스트, 생성 길이. 원문으로부터 패러프레이즈를 생성할 때 제약이 적용되는 정도를 시물레이션해 보았다. 10 어절 이하의 원문은 평균 2.05 번의 제약이 적용되면 패러프레이즈가 생성되었으며 키워드 치환, 마스킹에 의한 키워드 확장과 패턴 변경에 관한 제약이 가장 많이 적용되는 것을 확인하였다.
최근 ChatGPT의 등장으로 텍스트 생성 모델에 대한 관심이 높아지면서, 텍스트 생성 태스크의 성능평가를 위한 지표에 대한 연구가 활발히 이뤄지고 있다. 전통적인 단어 빈도수 기반의 성능 지표는 의미적인 유사도를 고려하지 못하기 때문에, 사전학습 언어모델을 활용한 지표인 BERTScore를 주로 활용해왔다. 하지만 이러한 방법은 사전학습 언어모델이 학습한 데이터에 존재하는 편향으로 인해 공정성에 대한 문제가 우려된다. 이에 따라 한국어 사전학습 언어모델의 편향에 대한 분석 연구가 필요한데, 기존의 한국어 사전학습 언어모델의 편향 분석 연구들은 사회에서 생성되는 다양한 속성 별 편향을 고려하지 못했다는 한계가 있다. 또한 서로 다른 언어를 기반으로 하는 사전학습 언어모델들의 속성 별 편향을 비교 분석하는 연구 또한 미비하였다. 이에 따라 본 논문에서는 한국어 사전학습 언어모델의 속성 별 편향을 비교 분석하며, 영어 사전학습 언어모델이 갖고 있는 속성 별 편향과 비교 분석하였고, 비교 가능한 데이터셋을 구축하였다. 더불어 한국어 사전학습 언어모델의 종류 및 크기 별 편향 분석을 통해 적합한 모델을 선택할 수 있도록 가이드를 제시한다.
자연스러운 상호작용이 가능한 인공지능 에이전트를 개발하기 위해서는 언어적 표현뿐 아니라, 비언어적 표현 또한 고려되어야 한다. 본 논문에서는 한국어 발화문으로부터 비언어적 표현인 모션을 생성하는 연구를 소개한다. 유튜브 영상으로부터 데이터셋을 구축하고, Text to Motion의 기존 모델인 T2M-GPT와 이종 모달리티 데이터를 연계 학습한 VL-KE-T5의 언어 인코더를 활용하여 구현한 모델로 실험을 진행하였다. 실험 결과, 한국어 발화 텍스트에 대해 생성된 모션 표현은 FID 스코어 0.11의 성능으로 나타났으며, 한국어 발화 정보 기반 비언어 표현 정보 생성의 가능성을 보여주었다.
유아들의 언어습득에 있어서 중요한 점 하나는 학습자에 대한 언어환경의 노출이다. 유아가 접하는 언어환경은 부모와 같은 인간뿐만 아니라 각종 미디어와 같은 인공적 환경도 포함되며, 유아는 이러한 방대한 언어환경을 탐색하면서 언어를 학습한다. 본 연구는 대용량의 언어 데이터 노출이 영향을 미치는 유아언어학습을 유연하고 적절하게 모사하는 인지적 기제에 따른 기계학습 방식을 제안한다. 유아의 초기 언어학습은 문장수준의 학습과 생성 같은 행동들이 수반되는데, 이는 언어 코퍼스에 대한 노출만으로 모사가 가능하다. 모사의 핵심은 언어 하이퍼망 구조를 가진 기억기반 학습모델이다. 언어 하이퍼망은 언어구성 요소들 간의 상위차원 관계 표상을 가능케 함으로써 새로운 데이터 스트림에 대해 유사구조의 적용과 이용을 도모하여 발달적이고 점진적인 학습을 모사한다. 본 연구에서는 11 개의 유아용 비디오로부터 추출한 문장 32744개를 언어 하이퍼망을 통한 점진적 학습을 수행하여 문장을 생성해 유아의 점진적, 발달적 학습을 모사하였다.
지능정보시스템 구축에 있어서 자동화가 어려운 단계중의 하나인 규칙 습득을 위해 활용되는 방법중의 하나가 제한된 언어집합 기법을 이용하는 것이다. 그러나 제한된 언어집합 기법을 이용해 규칙을 생성하기 위해서는 규칙을 구성하는 변수와 그 값들에 대한 정보가 사전에 정의되어 있어야 하는데, 유동성이 큰 웹 환경에서 예상 가능한 모든 변수와 그 값을 사전에 정의하는 것이 매우 어렵다. 이에 본 연구에서는 이러한 한계를 극복하기 위해 제한된 언어집합 기법과 온톨로지를 이용한 규칙 생성 방법론을 제시하였다. 이를 위해 지식의 습득 대상이 되는 특정 문장은 문법구조 분석기를 이용해 파싱을 수행하며, 파싱된 단어들을 이용해 규칙의 구성 요소인 변수와 그 값을 식별한다. 그러나 규칙을 내포한 자연어 문장의 불완전성으로 인해 변수가 명확하지 않거나 완전히 빠져 있는 경우가 흔히 발생하며, 이로 인해 온전한 형식의 규칙 생성이 어렵게 된다. 이 문제는 도메인 온톨로지의 생성을 통해 해결하였다. 이 온톨로지는 특정 도메인을 구성하고 있는 개념들간의 관계를 포함하고 있다는 점에서는 기존의 온톨로지와 유사하지만, 규칙을 완성하는 과정에서 사용된 개념들의 사용빈도를 기반으로 온톨로지의 구조를 변경하고, 결과적으로 더 정확한 규칙의 생성을 지원한다는 점에서 기존의 온톨로지와 차별화된다. 이상의 과정을 통해 식별된 규칙의 구성요소들은 제한된 언어집합 기법을 이용해 구체화된다. 본 연구에서 제안하는 방법론을 설명하기 위해 임의의 인터넷 쇼핑몰에서 수행되는 배송관련 웹 페이지를 선정하였다. 본 방법론은 XRML에서의 지식 습득 과정의 효율성 제고에 기여할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.