• 제목/요약/키워드: 언어기반

검색결과 4,070건 처리시간 0.034초

블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어로의 학습 전이를 위한 프로그램 설계 방안 (A Suggestion of Designing Program for Learning Transfer from Block-Based Programming Language to Text-Based Programming Language)

  • 이소율;이영준
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2018년도 동계학술대회
    • /
    • pp.29-31
    • /
    • 2018
  • 프로그래밍 언어 교육에서 일반적으로 학습자들은 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어 순서로 학습한다. 블록 기반 프로그래밍 언어나 텍스트 기반 프로그래밍 언어는 여타의 프로그래밍 언어들과 마찬가지로 프로그래밍의 기본 논리는 동일하나, 형태, 언어적 특성 및 사용 등에 대하여 다소 차이가 있다. 따라서 본 연구에서는 학습자들의 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어로의 유연한 학습 전이를 돕기 위한 프로그램의 설계 방안을 선행 조직자의 제시, 학습 콘텐츠의 체계화, 단순하고 직관적인 화면 구성으로 제시하였다.

  • PDF

프로그래밍 교육에서 2개 이상 프로그래밍 언어의 학습 전이 효과에 대한 이론적 고찰 (A theoretical study for effects about learning transfer between two more languages in programming education)

  • 이소율;이영준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.99-100
    • /
    • 2018
  • 컴퓨팅 사고력이 강조됨에 따라 우리 나라를 비롯한 세계 여러 나라에서는 프로그래밍 교육 등 컴퓨팅 관련 교육을 실시하고 있다. 일반적으로 프로그래밍 교육에서 초보 학습자에게는 블록 기반 프로그래밍 언어를 학습한 후 텍스트 기반 프로그래밍 언어를 학습하게 된다. 블록 기반 언어와 텍스트 기반 언어는 동일한 프로그래밍 논리를 함양하게 되지만, 다른 모든 언어들과 마찬가지로 언어 특성, 사용법, 형태 등 다소 차이가 있다. 따라서 본 논문에서는 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어의 학습 전이의 효과에 대해 이론적 고찰을 실시하였으며, 그 결과 대부분의 연구에서 긍정적 전이 효과를 입증하였음을 확인하였다.

  • PDF

단어와 클래스 기반의 한국어 언어 모델링 (Word and class-based language modeling for Korean)

  • 김길연;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.221-225
    • /
    • 2001
  • 본 논문에서는 대량의 말뭉치를 바탕으로 한국어에 대해 단어 기반의 n-gram 언어 모델과 클래스 기반의 언어 모델을 구축하고, 이를 실험적으로 검증한다. 단어 기반의 n-gram 모델링의 경우 Katz의 백오프와 Kneser-ney의 스무딩(smoothing) 알고리즘에 대해 실험을 수행한다. 클래스 기반의 언어 모델의 경우에는 품사 태그를 단어의 클래스로 사용한 경우와 말뭉치로부터 자동으로 구축된 클래스를 사용한 경우로 나누어 실험한다. 마지막으로 단어 기반 모델과 클래스 기반 모델을 결합하여 각각의 모델과 그 성능을 비교한다. 실험 결과 단어 기반의 언어 모델의 경우 Katz의 백오프에 비해 Knerser-ney의 스무딩이 보다 조은 성능을 나타내었다. 클래스 기반의 모델의 경우 품사 기반의 방범보다 자동 구축된 단어 클래스를 이용하는 방법의 성능이 더 좋았다. 또한, 단어 모델과 클래스 모델을 결합한 모델이 가장 좋은 성능을 나타냈다. 논문의 모든 알고리즘은 직접 구현되었으며 KLM Toolkit이란 이름으로 제공된다.

  • PDF

DECO-LGG 언어자원 및 의존파서와 LSTM을 활용한 하이브리드 자질기반 감성분석 플랫폼 DecoFESA 구현 (DecoFESA: A Hybrid Platform for Feature-based Sentiment Analysis Based on DECO-LGG Linguistic Resources with Parser and LSTM)

  • 황창회;유광훈;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.321-326
    • /
    • 2020
  • 본 연구에서는 한국어 감성분석 성능 향상을 위한 DECO(Dictionnaire Electronique du COreen) 한국어 전자사전과 LGG(Local-Grammar Graph) 패턴문법 기술 프레임에 의존파서 및 LSTM을 적용하는 하이브리드 방법론을 제안하였다. 본 연구에 사용된 DECO-LGG 언어자원을 소개하고, 이에 기반하여 의미 정보를 의존파서(D-PARS)와 페어링하는 한편 OOV(Out Of Vocabulary)의 문제를 LSTM을 통해 해결하여 자질기반 감성분석 결과를 제시하였다. 부트스트랩 방식으로 반복 확장될 수 있는 LGG 언어자원 및 알고리즘을 통해 수행되는 자질기반 감성분석 프로세스는 전용 플랫폼 DecoFESA를 통해 그 범용성을 확장하였다. 실험을 위해서 네이버 쇼핑몰의 '화장품 구매 후기글'을 크롤링하였으며, DecoFESA 플랫폼을 통해 현재 구축된 DECO-LGG 언어자원 기반의 감성분석 성능을 평가하였다. 이를 통해 대용량 언어자원의 구축과 이를 활용하기 위한 어휘 시퀀스 처리 알고리즘의 구현이 보다 정확한 자질기반 감성분석 결과를 제공할 수 있음을 확인하였다.

  • PDF

KorBERT 기반 빈칸채우기 문제를 이용한 텍스트 분류 (Text Classification using Cloze Question based on KorBERT)

  • 허정;이형직;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.486-489
    • /
    • 2021
  • 본 논문에서는 KorBERT 한국어 언어모델에 기반하여 텍스트 분류문제를 빈칸채우기 문제로 변환하고 빈칸에 적합한 어휘를 예측하는 방식의 프롬프트기반 분류모델에 대해서 소개한다. [CLS] 토큰을 이용한 헤드기반 분류와 프롬프트기반 분류는 사전학습의 NSP모델과 MLM모델의 특성을 반영한 것으로, 텍스트의 의미/구조적 분석과 의미적 추론으로 구분되는 텍스트 분류 태스크에서의 성능을 비교 평가하였다. 의미/구조적 분석 실험을 위해 KLUE의 의미유사도와 토픽분류 데이터셋을 이용하였고, 의미적 추론 실험을 위해서 KLUE의 자연어추론 데이터셋을 이용하였다. 실험을 통해, MLM모델의 특성을 반영한 프롬프트기반 텍스트 분류에서는 의미유사도와 토픽분류 태스크에서 우수한 성능을 보였고, NSP모델의 특성을 반영한 헤드기반 텍스트 분류에서는 자연어추론 태스크에서 우수한 성능을 보였다.

  • PDF

KE-T5: 한국어-영어 대용량 텍스트를 활용한 이중언어 사전학습기반 대형 언어모델 구축 (Construction of bilingually pre-trained language model from large-scaled Korean and English corpus)

  • 신사임;김산;서현태
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.419-422
    • /
    • 2021
  • 본 논문은 한국어와 영어 코퍼스 93GB를 활용하여 구축한 대형 사전학습기반 언어모델인 KE-T5를 소개한다. KE-T5는 한국어와 영어 어휘 64,000개를 포함하는 대규모의 언어모델로 다양한 한국어처리와 한국어와 영어를 모두 포함하는 번역 등의 복합언어 태스크에서도 높은 성능을 기대할 수 있다. KE-T5의 활용은 대규모의 언어모델을 기반으로 영어 수준의 복잡한 언어처리 태스크에 대한 연구들을 본격적으로 시작할 수 있는 기반을 마련하였다.

  • PDF

청각장애아동의 특성에 적합한 웹기반 언어학습 시스템 연구 (A Study on the Web-based Language Learning System for Hearing Impaired children)

  • 금경애;권오준;김태석
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(하)
    • /
    • pp.839-843
    • /
    • 2003
  • 듣고 발화하는 과정을 통해 언어를 재구성해가는 건청아동과는 달리 청각장애 아동은 청력의 상실로 인해 언어습득의 선천적 매커니즘이 작용될 수 없으며 이는 청각장애아동의 언어능력향상을 위한 웹기반언어학습이 의도적으로 구성되어야 항을 의미한다. 동작이나 상황을 나타내는 말을 동적으로 구현하여 사물 및 행동에 대한 관찰력을 증진시키고 주도적으로 상황언어를 익힐 수 있도록 유도하는 시스템 구성이 필요하며 대체사고 전략을 활용하고 얼굴표정과 반대어와 대비어를 강조해야 함이 웹기반 언어학습을 통한 청각장애아동의 문법적 오류를 감소시키는 효과적 방법임을 이 논문을 통해 제안하고자 한다.

  • PDF

ELECTRA 기반 순차적 문장 분류 모델 (Sequential Sentence Classification Model based on ELECTRA)

  • 최기현;김학수;양성영;정재홍;임태구;김종훈;박찬규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.327-330
    • /
    • 2020
  • 순차적 문장 분류는 여러 문장들을 입력으로 받아 각 문장들에 대하여 사전 정의된 라벨을 할당하는 작업을 말한다. 일반적인 문장 분류와 대조적으로 기준 문장과 주변 문장 사이의 문맥 정보가 분류에 큰 영향을 준다. 따라서 입력 문장들 사이의 문맥 정보를 반영하는 과정이 필수적이다. 최근, 사전 학습 기반 언어 모델의 등장 이후 여러 자연 언어 처리 작업에서 큰 성능 향상이 있었다. 앞서 언급하였던 순차적 문장 분류 작업의 특성상 문맥 정보를 반영한 언어 표현을 생성하는 사전 학습 기반 언어 모델은 해당 작업에 매우 적합하다는 가설을 바탕으로 ELECTRA 기반 순차적 분류 모델을 제안하였다. PUBMED-RCT 데이터 셋을 사용하여 실험한 결과 제안 모델이 93.3%p로 가장 높은 성능을 보였다.

  • PDF

단어간 의존관계에 기반한 언어모델링 (Language Modeling based on Inter-Word Dependency Relation)

  • 이승미;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.239-246
    • /
    • 1998
  • 확률적 언어모델링은 일련의 단어열에 문장확률값을 적용하는 기법으로서 음성인식, 확률적 기계번역 등의 많은 자연언어처리 응용시스템의 중요한 한 요소이다. 기존의 접근방식으로는 크게 n-gram 기반, 문법 기반의 두가지가 있다. 일반적으로 n-gram 방식은 원거리 의존관계를 잘 표현 할 수 없으며 문법 기반 방식은 광범위한 커버리지의 문법을 습득하는데에 어려움을 가지고 있다. 본 논문에서는 일종의 단순한 의존문법을 기반으로 하는 언어모델링 기법을 제시한다. 의존문법은 단어와 단어 사이의 지배-피지배 관계로 구성되며 본 논문에서 소개되는 의존문법 재추정 알고리즘을 이용하여 원시 코퍼스로부터 자동적으로 학습된다. 실험 결과, 제시된 의존관계기반 모델이 tri-gram, bi-gram 모델보다 실험코퍼스에 대해서 약 11%에서 11.5%의 엔트로피 감소를 보임으로써 성능의 개선이 있었다.

  • PDF

KFREB: 생성형 한국어 대규모 언어 모델의 검색 기반 생성 평가 데이터셋 (KFREB: Korean Fictional Retrieval-based Evaluation Benchmark for Generative Large Language Models)

  • 이정섭;손준영;이태민;박찬준;강명훈;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.9-13
    • /
    • 2023
  • 본 논문에서는 대규모 언어모델의 검색 기반 답변 생성능력을 평가하는 새로운 한국어 벤치마크, KFREB(Korean Fictional Retrieval Evaluation Benchmark)를 제안한다. KFREB는 모델이 사전학습 되지 않은 허구의 정보를 바탕으로 검색 기반 답변 생성 능력을 평가함으로써, 기존의 대규모 언어모델이 사전학습에서 보았던 사실을 반영하여 생성하는 답변이 실제 검색 기반 답변 시스템에서의 능력을 제대로 평가할 수 없다는 문제를 해결하고자 한다. 제안된 KFREB는 검색기반 대규모 언어모델의 실제 서비스 케이스를 고려하여 장문 문서, 두 개의 정답을 포함한 골드 문서, 한 개의 골드 문서와 유사 방해 문서 키워드 유무, 그리고 문서 간 상호 참조를 요구하는 상호참조 멀티홉 리즈닝 경우 등에 대한 평가 케이스를 제공하며, 이를 통해 대규모 언어모델의 적절한 선택과 실제 서비스 활용에 대한 인사이트를 제공할 수 있을 것이다.

  • PDF